Genetic differentiation in relation to seed weights in wild soybean species (Glycine soja Sieb. & Zucc.)

文献类型: 外文期刊

第一作者: Wang, Ke-Jing

作者: Wang, Ke-Jing;Li, Xiang-Hua;Yan, Mao-Fen

作者机构:

关键词: Genetic differentiation;Genetic diversity;Seed phylogeny;Seed weight;Glycine soja

期刊名称:PLANT SYSTEMATICS AND EVOLUTION ( 影响因子:1.631; 五年影响因子:1.704 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Seed weight is one of the most important botanical and phylogenetic characteristics. The study objective was to understand whether there is genetic difference in different seed weights of wild soybean (Glycine soja Sieb. & Zucc.). A total of 563 wild soybean samples, which belonged separately to genebank germplasm accessions (220 samples), one regional population samples (293 plants) and one natural population (150 plants), were analyzed using microsatellite markers. Of four size classes, the smallest seed size type had the highest coefficient of variation in seed weight; small and large seed types had relatively great genetic differences. In the national genebank germplasm accessions, genetic diversity gradually decreased from quantitatively dominant small and middling seed types to less frequent large seed types. In the regional and natural populations, generally, small to middling seed sizes had higher genetic diversity than the smallest and larger seed sizes. Cluster analysis revealed genetic differences in seed size traits. The semi-wild type (Glycine gracilis Skvortzow) was the most genetically differentiated from other seed sizes. However, it was also clearly shown that the phylogenic genetic differentiation among seed sizes was less than the genetic differentiation among geographical habitat populations in the wild soybean species

分类号: Q94

  • 相关文献

[1]Genetic diversity and differentiation of Chinese wild soybean germplasm (G-soja Sieb. & Zucc.) in geographical scale revealed by SSR markers. Li, X. H.,Wang, K. J.,Jia, J. Z.,Li, X. H.. 2009

[2]A preliminary comparative evaluation of genetic diversity between Chinese and Japanese wild soybean (Glycine soja) germplasm pools using SSR markers. Wang, Ke-Jing,Takahata, Yoshihito. 2007

[3]Population structure of the wild soybean (Glycine soja) in China: implications from microsatellite analyses. Li, Yinghui,Qiu, Lijuan,Guo, Juan,Wang, Yunsheng,Chen, Jianjun,Wang, Ying,Liu, Yifei,Huang, Hongwen.

[4]Genetic diversity and geographical peculiarity of Tibetan wild soybean (Glycine soja). Wang, Ke-Jing,Li, Xiang-Hua. 2012

[5]Diversity analysis of the developed qingke (hulless barley) cultivars representing different growing regions of the Qinghai-Tibet Plateau in China using sequence-related amplified polymorphism (SRAP) markers. Liu, Xianjun,Liu, Xinchun,Feng, Zongyun,Yang, Ping,Yang, Wuyun,Yang, Ping,Liu, Xianjun,Liu, Xinchun,Feng, Zongyun. 2010

[6]Genetic diversity and relationship of Mauremys mutica and M-annamensis assessed by DNA barcoding sequences. Zhao, Jian,Li, Wei,Wen, Ping,Zhang, Dandan,Zhu, Xinping,Zhao, Jian,Wen, Ping. 2016

[7]The loss of genetic diversity during captive breeding of the endangered sculpin, Trachidermus fasciatus, based on ISSR markers: implications for its conservation. Bi Xiaoxiao,Yang Qiaoli,Gao Tianxiang,Li Chuangju. 2011

[8]Genetic characterization of three breeds of high royal jelly producing honeybee (Apis mellifera ligustica) in China. Yin, Ling,Ji, Ting,Chen, Guohong,Peng, Wenjun. 2011

[9]Genetic variation in wild and cultured populations of the pearl oyster Pinctada fucata from southern China. Yu, Da Hui,Chu, Ka Hou. 2006

[10]Tracing genetic differentiation of Chinese Mongolian sheep using microsatellites. Zhong, T.,Han, J. L.,Zhao, Q. J.,Fu, B. L.,Pu, Y. B.,He, X. H.,Guan, W. J.,Ma, Y. -H.,Zhong, T.,Jeon, J. T.,Han, J. L.,Guo, J..

[11]Genetic diversity and differentiation of Acanthoscelides obtectus Say (Coleoptera: Bruchidae) populations in China. Duan, Canxing,Zhu, Zhendong,Wang, Xiaoming,Li, Wanchang,Bao, Shiying.

[12]Genetic diversity and population structure of Portunus sanguinolentus (Herbst, 1783) revealed by mtDNA COI sequences. Ren, Guijing,Ma, Hongyu,Ma, Chunyan,Wang, Wei,Chen, Wei,Ma, Lingbo,Ma, Hongyu.

[13]Genetic diversity and linkage disequilibrium studies on a 3.1-Mb genomic region of chromosome 3B in European and Asian bread wheat (Triticum aestivum L.) populations. Hao, C. Y.,Perretant, M. R.,Choulet, F.,Wang, L. F.,Paux, E.,Sourdille, P.,Feuillet, C.,Balfourier, Francois,Hao, C. Y.,Wang, L. F.,Zhang, X. Y.,Hao, C. Y.,Wang, L. F.,Zhang, X. Y.,Hao, C. Y.,Wang, L. F.,Zhang, X. Y..

[14]Population genetic structure of Myzus persicae nicotianae (Hemiptera: Aphididae) in China by microsatellite analysis. Zhao, C.,Tang, S. H.,Xu, P. J.,Wang, X. F.,Wang, X. W.,Ren, G. W.,Yang, X. M.,Bian, W. J.. 2015

[15]Analysis of Genetic Structure and Diversity of Chai Chicken Breed Using Microsatellite Markers. Zhao, Zhen-Hua,Li, Shou-Feng,Huang, Hua-Yun,Xi, Jian-Zhong,Jia, Qin. 2010

[16]Genetic differentiation and diversity of phenotypic characters in Chinese wild soybean (Glycine soja Sieb. et Zucc.) revealed by nuclear SSR markers and the implication for intraspecies phylogenic relationship of characters. Wang, Ke-Jing,Li, Xiang-Hua.

[17]Analysis of Genetic Diversity and Differentiation of Seven Stocks of Litopenaeus vannamei Using Microsatellite Markers. Zhang Kai,Zhang Quanqi,Wang Weiji,Li Weiya,Kong Jie,Li Weiya. 2014

[18]Low mtDNA variation and shallow population structure of the Chinese pomfret Pampus chinensis along the China coast. Sun, P.,Tang, B. J.. 2018

[19]Genetic differentiation and diversity of Callosobruchus chinensis collections from China. Duan, C. X.,Zhu, Z. D.,Li, D. D.,Sun, S. L.,Wang, X. M.,Li, W. C..

[20]Diversification and genetic differentiation of cultivated melon inferred from sequence polymorphism in the chloroplast genome. Tanaka, Katsunori,Akashi, Yukari,Nishida, Hidetaka,Kato, Kenji,Fukunaga, Kenji,Yamamoto, Tatsuya,Aierken, Yasheng,Long, Chun Lin,Yoshino, Hiromichi,Sato, Yo-Ichiro.

作者其他论文 更多>>