Transcriptome comparison between inactivated and activated ovaries of the honey bee Apis mellifera L.

文献类型: 外文期刊

第一作者: Niu, D.

作者: Niu, D.;Zheng, H.;Lu, Y.;Hu, F.;Corona, M.;Sohr, A.;Chen, X.;Cao, L.

作者机构:

关键词: Apis mellifera;inactivated ovaries;activated ovaries;RNA-sequencing;differentially expressed genes;mRNAs

期刊名称:INSECT MOLECULAR BIOLOGY ( 影响因子:3.585; 五年影响因子:3.215 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Ovarian activity not only influences fertility, but is also involved with the regulation of division of labour between reproductive and behavioural castes of female honey bees. In order to identify candidate genes associated with ovarian activity, we compared the gene expression patterns between inactivated and activated ovaries of queens and workers by means of high-throughput RNA-sequencing technology. A total of 1615 differentially expressed genes (DEGs) was detected between ovaries of virgin and mated queens, and more than 5300 DEGs were detected between inactivated and activated worker ovaries. Intersection analysis of DEGs amongst five libraries revealed that a similar set of genes (824) participated in the ovary activation of both queens and workers. A large number of these DEGs were predominantly related to cellular, cell and cell part, binding, biological regulation and metabolic processes. In addition, over 1000 DEGs were linked to more than 230 components of Kyoto Encyclopedia of Genes and Genomes pathways, including 25 signalling pathways. The reliability of the RNA-sequencing results was confirmed by means of quantitative real-time PCR. Our results provide new insights into the molecular mechanisms involved in ovary activation and reproductive division of labour.

分类号: R47

  • 相关文献

[1]Comparative Transcriptomic Analysis of Two Brassica napus Near-Isogenic Lines Reveals a Network of Genes That Influences Seed Oil Accumulation. Wang, Jingxue,Li, Chen,Yuan, Ling,Singh, Sanjay K.,Pattanaik, Sitakanta,Yuan, Ling,Du, Chunfang,Fan, Jianchun. 2016

[2]Lower Expression of SLC27A1 Enhances Intramuscular Fat Deposition in Chicken via Down-Regulated Fatty Acid Oxidation Mediated by CPT1A. Qiu, Fengfang,Ma, Jing-e,Luo, Wen,Zhang, Li,Chen, Shaohao,Nie, Qinghua,Zhang, Xiquan,Qiu, Fengfang,Ma, Jing-e,Luo, Wen,Zhang, Li,Chen, Shaohao,Nie, Qinghua,Zhang, Xiquan,Qiu, Fengfang,Xie, Liang,Chao, Zhe,Lin, Zhemin. 2017

[3]Transcriptome Analysis of Stem and Globally Comparison with Other Tissues in Brassica napus. Miao, Liyun,Zhang, Libin,Raboanatahiry, Nadia,Fu, Chunhua,Li, Maoteng,Miao, Liyun,Xiang, Jun,Gan, Jianping,Li, Maoteng,Lu, Guangyuan,Zhang, Xuekun. 2016

[4]Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation. Wang, Xu-Chu,Li, Qin,Xiao, Guang-Hui,Liu, Gao-Jun,Liu, Nin-Jing,Qin, Yong-Mei,Wang, Xu-Chu,Jin, Xiang.

[5]Transcriptomic responses of water buffalo liver to infection with the digenetic fluke Fasciola gigantica. Zhang, Fu-Kai,Zhang, Xiao-Xuan,He, Jun-Jun,Zheng, Wen-Bin,Ma, Jian-Gang,Guo, Ai-Jiang,Zhu, Xing-Quan,Elsheikha, Hany M.,Sheng, Zhao-An,Huang, Wei-Yi,Zhu, Xing-Quan. 2017

[6]Large-scale identification of wheat genes resistant to cereal cyst nematode Heterodera avenae using comparative transcriptomic analysis. Wu, Du-Qing,Huang, Wen-Kun,Peng, Huan,Wang, Gao-Feng,Cui, Jiang-Kuan,Liu, Shi-Ming,Peng, De-Liang,Li, Zhi-Gang,Yang, Jun,Li, Zhi-Gang,Yang, Jun. 2015

[7]Transcriptome analysis reveals the effect of pre-harvest CPPU treatment on the volatile compounds emitted by kiwifruit stored at room temperature. Luo, Jing,Guo, Linlin,Huang, Yunan,Wang, Chao,Qiao, Chengkui,Pang, Rongli,Li, Jun,Pang, Tao,Wang, Ruiping,Xie, Hanzhong,Fang, Jinbao. 2017

[8]Transcriptome and Metabolome Analyses Provide Insights into the Occurrence of Peel Roughing Disorder on Satsuma Mandarin (Citrus unshiu Marc.) Fruit. Li, Fei-Fei,Xiong, Jiang,Cao, Xiong-Jun,Ma, Xiao-Chuan,Zhang, Zi-Mu,Xie, Shen-Xi,Lu, Xiao-Peng,Li, Fei-Fei,Xiong, Jiang,Cao, Xiong-Jun,Ma, Xiao-Chuan,Zhang, Zi-Mu,Xie, Shen-Xi,Li, Fei-Fei,Cao, Shang-Yin. 2017

[9]Identification and analysis of pig chimeric mRNAs using RNA sequencing data. Ma, Lei,Yang, Shulin,Zhao, Weiming,Tang, Zhonglin,Li, Kui,Ma, Lei,Zhang, Tingting. 2012

[10]Combination analysis of genome-wide association and transcriptome sequencing of residual feed intake in quality chickens. Xu, Zhenqiang,Zhang, Zhe,Nie, Qinghua,Xu, Jiguo,Zhang, Dexiang,Zhang, Xiquan,Xu, Zhenqiang,Zhang, Zhe,Nie, Qinghua,Xu, Jiguo,Zhang, Dexiang,Zhang, Xiquan,Xu, Zhenqiang,Ji, Congliang,Zhang, Yan,Zhang, Dexiang. 2016

[11]Characterization of Copy Number Variation's Potential Role in Marek's Disease. Xu, Lingyang,He, Yanghua,Ding, Yi,Sun, Guirong,Carrillo, Jose Adrian,Li, Yaokun,Ghaly, Mona M.,Ma, Li,Song, Jiuzhou,Xu, Lingyang,Liu, George E.,Xu, Lingyang,Sun, Guirong,Li, Yaokun,Ghaly, Mona M.,Zhang, Huanmin. 2017

[12]Transcriptomic dissection of the rice-Fusarium fujikuroi interaction by RNA-Seq. Ji, Zhijuan,Zeng, Yuxiang,Liang, Yan,Qian, Qian,Yang, Changdeng,Ji, Zhijuan,Qian, Qian.

[13]Melittopalynology and Trophic Niche Analysis of Apis cerana and Apis mellifera in Yunnan Province of Southwest China. Liu, Y. J.,Zhao, T. R.,Zhao, F. Y.,Liu, Y. J.,Zhang, X. W.,Liang, C.. 2013

[14]Identification of Varroa mites (Acari : Varroidae) infesting Apis cerana and Apis mellifera in China. Zhou, T,Anderson, DL,Huang, ZY,Huang, SX,Yao, J,Ken, T,Zhang, QW. 2004

[15]Differential physiological effects of neonicotinoid insecticides on honey bees: A comparison between Apis mellifera and Apis cerana. Li, Zhiguo,Li, Meng,He, Jingfang,Zhao, Xiaomeng,Huang, Wei-Fone,Nie, Hongyi,Zhao, Yazhou,Su, Songkun,Chaimanee, Veeranan,Zhao, Yazhou. 2017

[16]Bt Toxin Cry1Ie Causes No Negative Effects on Survival, Pollen Consumption, or Olfactory Learning in Worker Honey Bees (Hymenoptera: Apidae). Diao, Qing-Yun,Jia, Hui-Ru,Geng, Li-Li.

[17]Diagnosis and distribution of the Apis mellifera filamentous virus (AmFV) in honey bees (Apis mellifera) in China. Hou, C.,Li, B.,Deng, S.,Chu, Y.,Diao, Q.,Hou, C.,Li, B.,Deng, S.,Chu, Y.,Diao, Q.,Li, B..

[18]Prevalence, intensity and associated factor analysis of Tropilaelaps mercedesae infesting Apis mellifera in China. Luo, Qi-Hua,Zhou, Ting,Dai, Ping-Li,Song, Huai-Lei,Wu, Yan-Yan,Wang, Qiang,Luo, Qi-Hua,Zhou, Ting,Dai, Ping-Li,Song, Huai-Lei,Wu, Yan-Yan,Wang, Qiang.

[19]INGESTION OF Bt RICE POLLEN DOES NOTREDUCE THE SURVIVALORHYPOPHARYNGEAL GLAND DEVELOPMENT OF APIS MELLIFERA ADULTS. Chen, Xiuping,Romeis, Jorg,Peng, Yufa,Li, Yunhe,Wang, Yuanyuan,Chen, Xiuping,Romeis, Jorg,Peng, Yufa,Li, Yunhe,Wang, Yuanyuan,Shi, Jianrong,Dai, Pingli.

[20]New Asian types of Varroa destructor: a potential new threat for world apiculture. Navajas, Maria,Clement, Jeremy,Anderson, Denis L.,de Guzman, Lilia I.,Huang, Zachary Y.,Zhou, Ting,Le Conte, Yves.

作者其他论文 更多>>