Energy dissipation in photosystem 2 complexes of peanut leaves subjected to light pulses

文献类型: 外文期刊

第一作者: Li, Xin-Guo

作者: Li, Xin-Guo;Guo, Feng;Meng, Jing-Jing;Yang, Sha;Picimbon, Jean-Francois;Li, Xin-Guo;Guo, Feng;Meng, Jing-Jing;Yang, Sha;Wan, Shu-Bo;Picimbon, Jean-Francois;Guo, Shang-Jing

作者机构:

关键词: Light pulse;Energy dissipation;PS2 complex;Peanut;Photoinactivation

期刊名称:PLANT GROWTH REGULATION ( 影响因子:3.412; 五年影响因子:3.691 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: To increase crop yields, intercropping agricultural cultivation approach (IACA) and relay cropping agricultural cultivation approach (RACA) were introduced into cultivation of peanut (Arachis hypogaca L.), one of the most important oil crops in the world. IACA/RACA improves the yield of the crop per unit area, but rather decreases the yield of a single crop compared with monocropping agricultural cultivation approach. In peanut IACA/RACA, peanut plants would grow under low light and high light pulses (HLP) before maize/wheat harvest. Energy dissipation in photosystem 2 (PS2) complexes was evaluated in peanut leaves after being induced by light pulses and continuous light with different light intensities. Actual photochemical efficiency of PS2 (ФPS2) and nonphotochemical quenching induced by light pulses in peanut leaves generally were significantly lower compared with those induced by continuous light. In addition, the degree of PS2 reaction center closure (1-qP) induced by light pulses in peanut leaves was significantly higher compared with those induced by continuous light. Different results were obtained only for ФPS2 and 1-qP induced by 20 s HLP. In methyl viologen (MV) treated samples, ФPS2 and the quantum yield of light induced thermal dissipation by non-functional PS2 (Ф_(NF)) were similar to those observed in non-MV treatments. These results implied that light pulses could induce photoinactivation of PS2 reaction centers but not the xanthophyll cycle to dissipate excess energy.

分类号: S311

  • 相关文献

[1]Effects of heat and high irradiance stress on energy dissipation of photosystem II in low irradiance-adapted peanut leaves. Guo, F.,Yang, S.,Zhang, J. L.,Meng, J. J.,Li, X. G.,Feng, Y.,Wan, S. B..

[2]Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris). Zhu, Su-Qin,Chen, Ming-Wei,Liang, Jian-Sheng,Zhu, Su-Qin,Ji, Ben-Hua,Jiao, De-Mao.

[3]Transgenic Expression and Identification of Recombinant Human Proinsulin in Peanut. Zheng Ling,Wang Yu,Wan Shu-Bo,Peng Zhen-Ying,Bi Yu-Ping,Zheng Ling,Wang Yu,Bian Fei,Wan Shu-Bo,Peng Zhen-Ying,Zheng Ling,Wang Yu,Bian Fei,Wan Shu-Bo,Peng Zhen-Ying,Bi Yu-Ping,Jiao Qi-Qing,Qu Shu-Jie,Wan Shu-Bo,Bi Yu-Ping. 2016

[4]Transcriptome Analysis of Calcium and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development. Li, Yan,Meng, Jingjing,Yang, Sha,Guo, Feng,Zhang, Jialei,Geng, Yun,Cui, Li,Li, Xinguo,Wan, Shubo. 2017

[5]Calcium contributes to photoprotection and repair of photosystem II in peanut leaves during heat and high irradiance. Yang, Sha,Wang, Fang,Guo, Feng,Meng, Jing-Jing,Li, Xin-Guo,Yang, Sha,Guo, Feng,Meng, Jing-Jing,Li, Xin-Guo,Wan, Shu-Bo,Wang, Fang. 2015

[6]Cloning of Acyl-ACP thioesterase FatA from Arachis hypogaea L. and its expression in Escherichia coli. Chen, G.,Peng, Z. Y.,Xuan, N.,Zhang, Y.,Bi, Y. P.,Chen, G.. 2012

[7]Genome-Wide Identification and Comparative Analysis of Cytosine-5 DNA Methyltransferase and Demethylase Families in Wild and Cultivated Peanut. Wang, Pengfei,Gao, Chao,Bian, Xiaotong,Zhao, Shuzhen,Zhao, Chuanzhi,Xia, Han,Song, Hui,Hou, Lei,Wan, Shubo,Wang, Xingjun. 2016

[8]Peanut (Arachis hypogaea L.) Omics and Biotechnology in China. Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Liu, Shuan-Tao. 2011

[9]Identification of Metabolites and Transcripts Involved in Salt Stress and Recovery in Peanut. Cui, Feng,Liu, Yiyang,Han, Yan,Wan, Shubo,Li, Guowei,Cui, Feng,Liu, Yiyang,Han, Yan,Wan, Shubo,Li, Guowei,Sui, Na,Liu, Shanshan,Duan, Guangyou. 2018

[10]Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. Gao, Chao,Wang, Pengfei,Zhao, Shuzhen,Zhao, Chuanzhi,Xia, Han,Hou, Lei,Zhang, Ye,Li, Changsheng,Wang, Xingjun,Wang, Xingjun,Ju, Zheng. 2017

[11]Genome-Wide Dissection of the Heat Shock Transcription Factor Family Genes in Arachis. Wang, Pengfei,Song, Hui,Li, Changsheng,Li, Pengcheng,Li, Aiqin,Guan, Hongshan,Hou, Lei,Wang, Xingjun,Wang, Xingjun. 2017

[12]Identification and expression dynamics of three WUSCHEL related homeobox 13 (WOX13) genes in peanut. Wang, Pengfei,Li, Changsheng,Li, Cui,Zhao, Chuanzhi,Xia, Han,Zhao, Shuzhen,Hou, Lei,Gao, Chao,Wan, Shubo,Wang, Xingjun,Wang, Pengfei,Li, Changsheng,Li, Cui,Zhao, Chuanzhi,Xia, Han,Zhao, Shuzhen,Hou, Lei,Gao, Chao,Wan, Shubo,Wang, Xingjun.

[13]Comparative proteomics of peanut gynophore development under dark and mechanical stimulation. Sun, Yong,Wang, Qingguo,Li, Zhen,Hou, Lei,Liu, Wei,Dai, Shaojun,Sun, Yong.

[14]Transcriptome and Differential Expression Profiling Analysis of the Mechanism of Ca2+ Regulation in Peanut (Arachis hypogaea) Pod Development. Yang, Sha,Zhang, Jialei,Geng, Yun,Guo, Feng,Meng, Jingjing,Li, Xinguo,Li, Lin,Wang, Jianguo,Sui, Na,Wan, Shubo. 2017

[15]Identification of chilling-responsive transcripts in peanut (Arachis hypogaea L.). Wang, Chuan Tang,Wang, Xiu Zhen,Chi, Xiao Yuan,Wu, Qi,Chen, Dian Xu,Tang, Yue Yi,Yang, Guan Pin,Feng, Tong,Gao, Hua Yuan,Xu, Ya Long. 2011

[16]Physiological fundamentals of the AnM cultivation technique in peanut production: Leaf photosynthetic hysteresis is reduced by exposing hypocotyls. Qin, Feifei,Takano, Tetsuo,Qin, Feifei,Xu, Hui-lian,Qin, Feifei. 2012

[17]Functional Genomic Analysis of Aspergillus flavus Interacting with Resistant and Susceptible Peanut. Wang, Houmiao,Lei, Yong,Yan, Liying,Wan, Liyun,Ren, Xiaoping,Chen, Silong,Jiang, Huifang,Liao, Boshou,Wang, Houmiao,Lei, Yong,Yan, Liying,Wan, Liyun,Ren, Xiaoping,Chen, Silong,Jiang, Huifang,Liao, Boshou,Dai, Xiaofeng,Guo, Wei. 2016

[18]The effect of low water content on seed longevity. Hu, CL,Zhang, YL,Tao, M,Hu, XR,Jiang, CY. 1998

[19]Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis. Hong, Yanbin,Liu, Ying,Chen, Xiaoping,Liang, Xuanqiang,Hong, Yanbin,Huang, Shangzhi,Pandey, Manish K.,Varshney, Rajeev K.,Liu, Hong,Varshney, Rajeev K.,Varshney, Rajeev K.. 2015

[20]Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). Pandey, Manish K.,Qiao, Lixian,Feng, Suping,Khera, Pawan,Wang, Hui,Guo, Baozhu,Pandey, Manish K.,Khera, Pawan,Varshney, Rajeev K.,Pandey, Manish K.,Qiao, Lixian,Feng, Suping,Khera, Pawan,Wang, Hui,Culbreath, Albert K.,Guo, Baozhu,Wang, Ming Li,Tonnis, Brandon,Barkley, Noelle A.,Qiao, Lixian,Feng, Suping,Wang, Hui,Wang, Jianping,Holbrook, C. Corley. 2014

作者其他论文 更多>>