Characterization of the global transcriptome for cotton (Gossypium hirsutum L.) anther and development of SSR marker

文献类型: 外文期刊

第一作者: Xianwen Zhang

作者: Xianwen Zhang ;Zhenwei Ye;TiankangWang;Hairong Xiong;Xiaoling Yuan;Zhigang Zhang;Youlu Yuan;Zhi Liu

作者机构:

关键词: Cotton;Polymorphism;SSR;Transcription factor;Transcriptome

期刊名称:GENE ( 影响因子:3.688; 五年影响因子:3.329 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Cotton is an important fiber plant, and it's attractive to elucidate the molecular mechanism of anther development due to the close relationship between the anther fertility and boll-setting, and also fiber yield. In the present paper, 47.2. million paired-end reads with average length of 82.87. bp from the anthers of TM-1 (. Gossypium hirsutum L.), a genetic standard line, were generated through transcriptome sequencing, and 210,965 unigenes of more than 100. bp were obtained. BLAST, KEGG, COG, and GO analyses showed that the genes were enriched in the processes of transcription, translation, and post-translation as well as hormone signal transduction, the transcription factor families, and cell wall-related genes mainly participating in cell expansion and carbohydrate metabolism. Further analysis identified 11,153 potential SSRs. A suit of 5122 primer pair sequences were designed, and 82 of 300 randomly selected primer pairs produced reproducible amplicons that were polymorphic among 22 cotton accessions from G. hirsutum, Gossypium barbadense and Gossypium arboreum. The UPGMA clustering analysis further confirmed high quality and effectiveness of these novel SSR markers. The present study provided insights into the transcriptome profile of the cotton and established a public information platform for functional genomics and molecular breeding.

分类号: R394

  • 相关文献

[1]Development of gene-based simple sequence repeat markers for association analysis in Cocos nucifera. Xia, Wei,Xiao, Yong,Liu, Zheng,Luo, Yi,Fan, Haikuo,Yang, Yaodong,Zhao, Songlin,Mason, Annaliese S.,Fan, Haikuo,Peng, Ming. 2014

[2]Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. Zhen Peng,Shoupu He,Wenfang Gong,Junling Sun,Zhaoe Pan,Feifei Xu,Yanli Lu,Xiongming Du. 2014

[3]Analysis of MIKCC-Type MADS-Box Gene Family in Gossypium hirsutum. Jiang Su-cheng,Pang Chao-you,Song Mei-zhen,Wei Heng-ling,Fan Shu-li,Yu Shu-xun. 2014

[4]Identification of SSR markers using soybean (Glycine max) ESTs from globular stage embryos. Li, Ai Qin,Zhao, Chuan Zhi,Wang, Xing Jun,Liu, Zhan Ji,Song, Guo Qi,Yin, Juan,Li, Chang Sheng,Xia, Han,Bi, Yu Ping,Zhang, Li Feng. 2010

[5]Genetic diversity among germplasms of Pitaya based on SSR markers. Fu, Jiaxin,Zhang, Rong,Qin, Yonghua,Lu, Fang,Jia, Lili,Hu, Qinglei,Liu, Chengming,Pan, Limei,Huang, Lifang,Liang, Guidong.

[6]Identification of candidate thermotolerance genes during early seedling stage in upland cotton (Gossypium hirsutum L.) revealed by comparative transcriptome analysis. Peng, Zhen,Cao, Moju,Xu, Jie,Lu, Yanli,Peng, Zhen,He, Shoupu,Gong, Wenfang,Sun, Junling,Pan, Zhaoe,Du, Xiongming,Sun, Gaofei.

[7]De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments. Li, Jin,Liu, Hailiang,Xia, Wenwen,Mu, Jianqiang,Feng, Yujie,Liu, Ruina,Wang, Aiying,Lin, Zhongping,Zhu, Jianbo,Chen, Xianfeng,Liu, Hailiang,Yan, Panyao,Chen, Xianfeng,Lin, Zhongping,Guo, Yong. 2017

[8]Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (Vitis vinifera L.) Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators. Cheng, Guo,Li, Qiang,Wang, Yu,Lan, Yi-Bin,Li, Si-Yu,Zhu, Yan-Rong,Song, Wen-Feng,Zhang, Xue,Cui, Xiao-Di,Wang, Jun,Wang, Yu,Lan, Yi-Bin,Li, Si-Yu,Wang, Jun,He, Yan-Nan,Chen, Wu,Sun, Run-Ze,Sun, Run-Ze,Cheng, Guo,Li, Qiang. 2017

[9]Transcriptomic Analysis of Seed Coats in Yellow-Seeded Brassica napus Reveals Novel Genes That Influence Proanthocyanidin Biosynthesis. Hong, Meiyan,Hu, Kaining,Tian, Tiantian,Li, Xia,Chen, Li,Zhang, Yan,Yi, Bin,Wen, Jing,Ma, Chaozhi,Shen, Jinxiong,Fu, Tingdong,Tu, Jinxing,Li, Xia,Chen, Li,Zhang, Yan. 2017

[10]Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa. Zhang, Yu,Peng, Lifang,Wu, Ya,Shen, Yanyue,Wang, Jianbo,Wu, Xiaoming.

[11]Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing. Duan, Cuifang,Argout, Xavier,Gebelin, Virginie,Summo, Marilyne,Dufayard, Jean-Francois,Leclercq, Julie,Piyatrakul, Piyanuch,Pirrello, Julien,Rio, Maryannick,Montoro, Pascal,Duan, Cuifang,Kuswanhadi,Piyatrakul, Piyanuch,Champion, Antony. 2013

[12]Identification of Candidate Anthocyanin-Related Genes by Transcriptomic Analysis of `Furongli' Plum (Prunus salicina Lindl.) during Fruit Ripening Using RNA-Seq. Fang, Zhi-Zhen,Zhou, Dan-Rong,Ye, Xin-Fu,Jiang, Cui-Cui,Pan, Shao-Lin. 2016

[13]De novo assembly, gene annotation, and marker development of mulberry (Morus atropurpurea) transcriptome. Dai, Fanwei,Tang, Cuiming,Wang, Zhenjiang,Luo, Guoqing,He, Li,Yao, Liuhui. 2015

[14]Transcriptome analysis and development of simple sequence repeat (SSR) markers in Zingiber striolatum Diels. Deng, Kuanping,Deng, Renju,Chen, Enfa,Fan, Jianxin. 2018

[15]Characterization of the bay scallop (Argopecten irradians concentricus Say) transcriptome and identification of growth-related genes. Fan, Sigang,Guo, Yihui,Liu, Baosuo,Fan, Sigang,Guo, Yihui,Liu, Baosuo,Yu, Dahui,Zhang, Dongling.

[16]Gene identification using RNA-seq in two sweetpotato genotypes and the use of mining to analyze carotenoid biosynthesis. Qin, Z.,Li, A.,Hou, F.,Wang, Q.,Dong, S.,Zhang, L..

[17]Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. Min Lin,Chaoyou Pang,Shuli Fan,Meizhen Song,Hengling Wei,Shuxun Yu. 2015

[18]Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea Island Cotton (Gossypium barbadense) Increase Fiber Strength in Upland Cotton (Gossypium hirsutum). Quanwei Lu,Yuzhen Shi,Huang, Jinling,Yuan, Youlu,Xianghui Xiao,Pengtao Li,Juwu Gong,Wankui Gong,Aiying Liu,Haihong Shang,Junwen Li,Qun Ge,Weiwu Song,Shaoqi Li,Zhen Zhang,Md Harun or Rashid,Renhai Peng,Youlu Yuan,Jinling Huang. 2017

[19]Protein-DNA interactions in the promoter region of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide of the cotton bollworm, Helicoverpa armigera. Hong, B,Zhang, ZF,Tang, SM,Yi, YZ,Zhang, TY,Xu, WH.

[20]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

作者其他论文 更多>>