Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR Is Essential for PROTEIN PHOSPHATASE 2A Holoenzyme Assembly and Plays Important Roles in Hormone Signaling, Salt Stress Response, and Plant Development

文献类型: 外文期刊

第一作者: Chen, Jian

作者: Chen, Jian;Hu, Rongbin;Zhu, Yinfeng;Shen, Guoxin;Zhang, Hong;Shen, Guoxin

作者机构:

关键词: Arabidopsis;PP2A holoenzyme;serine/threonine protein

期刊名称:PLANT PHYSIOLOGY ( 影响因子:8.34; 五年影响因子:8.972 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: PROTEIN PHOSPHATASE 2A (PP2A) is a major group of serine/threonine protein phosphatases in eukaryotes. It is composed of three subunits: scaffolding subunit A, regulatory subunit B, and catalytic subunit C. Assembly of the PP2A holoenzyme in Arabidopsis (Arabidopsis thaliana) depends on Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR (AtPTPA). Reduced expression of AtPTPA leads to severe defects in plant development, altered responses to abscisic acid, ethylene, and sodium chloride, and decreased PP2A activity. In particular, AtPTPA deficiency leads to decreased methylation in PP2A-C subunits (PP2Ac). Complete loss of PP2Ac methylation in the suppressor of brassinosteroid insensitive1 mutant leads to 30% reduction of PP2A activity, suggesting that PP2A with a methylated C subunit is more active than PP2A with an unmethylated C subunit. Like AtPTPA, PP2A-A subunits are also required for PP2Ac methylation. The interaction between AtPTPA and PP2Ac is A subunit dependent. In addition, AtPTPA deficiency leads to reduced interactions of B subunits with C subunits, resulting in reduced functional PP2A holoenzyme formation. Thus, AtPTPA is a critical factor for committing the subunit A/subunit C dimer toward PP2A heterotrimer formation.

分类号: Q945

  • 相关文献

[1]ZmFKBP20-1 improves the drought and salt tolerance of transformed Arabidopsis. Yu, Yanli,Li, Yanjiao,Zhao, Meng,Li, Wencai,Sun, Qi,Li, Wenlan,Meng, Zhaodong,Jia, Fengjuan,Jia, Fengjuan,Li, Nana. 2017

[2]Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton (Gossypium hirsutum L.). Xiaohong Zhang,Jianghui wei,Shuli Fan,Meizhen Song,Chaoyou Pang,Hengling Wei,Chengshe Wang,Shuxun Yu. 2016

[3]A novel GhBEE1-Like gene of cotton causes anther indehiscence in transgenic Arabidopsis under uncontrolled transcription level. Eryong Chen;Xiaoqian Wang,Zhang, Xueyan,Qian Gong,Hamama Islam Butt,Yanli Chen,Chaojun Zhang,Zuoren Yang,Zhixia Wu,Xiaoyang Ge,Xianlong Zhang,Fuguang Li,Xueyan Zhang.

[4]Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Zheng, Yuyu,Zhu, Ziqiang,Cui, Xuefei,Gong, Qingqiu,Su, Liang,Yang, Jianping,Fang, Shuang,Chu, Jinfang. 2017

[5]Molecular dynamics simulations reveal the disparity in specific recognition of GCC-box by AtERFs transcription factors super family in Arabidopsis. Wang, Shichen,Yang, Shuo,Hao, Dongyun,Yin, Yuejia,Hao, Dongyun,Xi, Jinghui,Li, Shanyu. 2009

[6]A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis. Wang, Wanqing,Tang, Weijiang,Ma, Tingting,Lin, Rongcheng,Niu, De,Jin, Jing Bo,Wang, Haiyang,Lin, Rongcheng. 2016

[7]Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis. Shi, Yuan-Zhi,Shi, Yuan-Zhi,Shi, Yuan-Zhi,Wan, Jiang-Xue,Zheng, Shao-Jian,Zhu, Xiao-Fang,Li, Gui-Xin. 2015

[8]The Blue Light-Dependent Phosphorylation of the CCE Domain Determines the Photosensitivity of Arabidopsis CRY2. Wang, Qin,Wang, Qin,He, Reqing,Liu, Xuanming,Zhao, Xiaoying,Barshop, William D.,Vashisht, Ajay A.,Wohlschlegel, James A.,Bian, Mingdi,Liu, Bin,Wang, Qin,Yu, Xuhong,Nguyen, Paula,Lin, Chentao. 2015

[9]AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Xu, Jing,Tian, Yong-Sheng,Peng, Ri-He,Xiong, Ai-Sheng,Zhu, Bo,Jin, Xiao-Fen,Gao, Feng,Fu, Xiao-Yan,Yao, Quan-Hong,Xu, Jing,Hou, Xi-Lin. 2010

[10]MPK3/MPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis. Ye, Lingxiao,Li, Lin,Wang, Lu,Wang, Shoudong,Li, Sen,Du, Juan,Zhang, Shuqun,Shou, Huixia,Wang, Lu. 2015

[11]Somatic embryogenesis receptor-like kinase 5 in the ecotype Landsberg erecta of Arabidopsis is a functional RD LRR-RLK in regulating brassinosteroid signaling and cell death control. Wu, Wangze,Wu, Yujun,Gao, Yang,Li, Meizhen,Yin, Hongju,Lv, Minghui,Zhao, Jianxin,Li, Jia,He, Kai,Wu, Wangze. 2015

[12]Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana. Shakeel, Samina N.,Gao, Zhiyong,Amir, Madiha,Chen, Yi-Feng,Rai, Muneeza Iqbal,Ul Haq, Noor,Schaller, G. Eric,Shakeel, Samina N.,Amir, Madiha,Rai, Muneeza Iqbal,Ul Haq, Noor,Chen, Yi-Feng. 2015

[13]The Arabidopsis J-protein AtDjB1 facilitates thermotolerance by protecting cells against heat-induced oxidative damage. Zhou, Wei,Zhou, Ting,Li, Mi-Xin,Zhao, Chun-Lan,Jia, Ning,Wang, Xing-Xing,Sun, Yong-Zhen,Xu, Meng,Li, Bing,Zhou, Wei,Li, Guo-Liang,Zhou, Ren-Gang,Zhou, Wei. 2012

[14]Arabidopsis is Susceptible to Rice stripe virus Infections. Sun, Feng,Yuan, Xia,Zhou, Tong,Fan, Yongjian,Zhou, Yijun,Yuan, Xia. 2011

[15]Regulation of Leaf Morphology by MicroRNA394 and its Target LEAF CURLING RESPONSIVENESS. Song, Jian Bo,Huang, Si Qi,Yang, Zhi Min,Dalmay, Tamas,Huang, Si Qi. 2012

[16]Reproduction and In-Depth Evaluation of Genome-Wide Association Studies and Genome-Wide Meta-analyses Using Summary Statistics. Niu, Yao-Fang,Guo, Long-Biao,Ye, Chengyin,Zheng, Hou-Feng,He, Ji,Han, Fang,Zheng, Hou-Feng,Chen, Guo-Bo. 2017

[17]microRNA/microRNA* complementarity is important for the regulation pattern of NFYA5 by miR169 under dehydration shock in Arabidopsis. Du, Qingguo,Gao, Wei,Sun, Suzhen,Li, Wen-Xue,Zhao, Meng. 2017

[18]Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase. Zhang, Baige,Liu, Kaidong,Zheng, Yan,Wang, Yingxiang,Wang, Jinxiang,Liao, Hong,Zhang, Baige,Liu, Kaidong,Wang, Jinxiang. 2013

[19]Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Zheng, Shu-Zhi,Liu, Yu-Liang,Li, Bing,Shang, Zhong-lin,Sun, Da-Ye,Zhou, Ren-Gang. 2012

[20]Distinguishing transgenic from non-transgenic Arabidopsis plants by H-1 NMR-based metabolic fingerprinting. Xia, Bin,Ren, Yanfei,Qu, Li-Jia,Peng, Yufa. 2009

作者其他论文 更多>>