A major quantitative trait locus conferring resistance to fusarium wilt was detected in cucumber by using recombinant inbred lines

文献类型: 外文期刊

第一作者: Zhang, Sheng-ping

作者: Zhang, Sheng-ping;Miao, Han;Yang, Yu-hong;Xie, Bing-yan;Wang, Ye;Gu, Xing-fang

作者机构:

关键词: Cucumis sativus L.;Fusarium wilt resistance;SSR marker;QTL;Genetic map

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Fusarium wilt is an important root disease of cucumber throughout the world. There are no accurate simple sequence repeat (SSR) markers for use in molecular breeding of fusarium wilt resistance and no studies on chromosomal mapping of the resistance in cucumber. In this paper, a set of 148 F9 recombinant inbred lines derived from the cross 9110Gt x 9930 and a total of 2,416 pairs of SSR primers were used to study the inheritance of fusarium wilt resistance and to detect quantitative trait loci (QTLs) conferring the resistance in cucumber. Genetic analysis indicated that the resistance to fusarium wilt in 9110Gt was quantitative. One major QTL, Foc2.1, was screened in the years 2007, 2009 and 2012. It accounted for phenotypic variances of 64.2, 32.2 and 38.8 % with logarithm of odds scores of 32.78, 12.51 and 15.15 in the three years, respectively. The major QTL was placed in the region of SSR03084-SSR17631 within a genetic distance of 2.4 cM on chromosome 2. The physical length of the genomic region harboring Foc2.1 was 751.6 kb and there were seven predicted nucleotide binding site resistance genes. The validation of SSR17631 linked to Foc2.1 was tested using 46 diverse germplasms. SSR17631 had an accuracy rate of 87.88 % for selecting resistant materials and it could be used to screen cucumber resources with fusarium wilt resistance in molecular marker-assisted selection breeding. The major QTL identified in this paper will help to understand the genetic basis of fusarium wilt resistance. The present study has provided a firm step for fine mapping and gene cloning of fusarium wilt resistance in cucumber in the future.

分类号: Q94

  • 相关文献

[1]Molecular mapping and candidate gene analysis for yellow fruit flesh in cucumber. Lu, H. W.,Miao, H.,Tian, G. L.,Gu, X. F.,Zhang, S. P.,Wehner, T. C..

[2]QTL mapping for resistance of maize to grey leaf spot. Leng, Yifeng,Li, Lujiang,Wu, Yuanqi,Cao, Moju,Rong, Tingzhao,He, Wenzhu,Yang, Lin,Leng, Yifeng,Zhang, Biao,Yang, Junpin,Kang, Jiwei,Tang, Haitao,Deng, Luchang,Chen, Yunping. 2018

[3]Preliminary Study on Mapping of Genes Controlling Staminate Flower Expression and QTL Analysis of the Ratio of Pistillate Flowers in Melon (Cucumis melo L.). Luan, Feishi,Sheng, Yunyan,Lu, Xuqiang. 2010

[4]Identification and characterization of a high kernel weight mutant induced by gamma radiation in wheat (Triticum aestivum L.). Cheng, Xuejiao,Chai, Lingling,Chen, Zhaoyan,Xu, Lu,Zhai, Huijie,Peng, Huiru,Yao, Yingyin,You, Mingshan,Sun, Qixin,Ni, Zhongfu,Cheng, Xuejiao,Chai, Lingling,Chen, Zhaoyan,Xu, Lu,Zhai, Huijie,Peng, Huiru,Yao, Yingyin,You, Mingshan,Sun, Qixin,Ni, Zhongfu,Cheng, Xuejiao,Chai, Lingling,Chen, Zhaoyan,Xu, Lu,Zhai, Huijie,Peng, Huiru,Yao, Yingyin,You, Mingshan,Sun, Qixin,Ni, Zhongfu,Cheng, Xuejiao,Chai, Lingling,Chen, Zhaoyan,Xu, Lu,Zhai, Huijie,Peng, Huiru,Yao, Yingyin,You, Mingshan,Sun, Qixin,Ni, Zhongfu,Cheng, Xuejiao,Chai, Lingling,Chen, Zhaoyan,Xu, Lu,Zhai, Huijie,Peng, Huiru,Yao, Yingyin,You, Mingshan,Sun, Qixin,Ni, Zhongfu,Zhao, Aiju. 2015

[5]Quantitative trait loci for resistance to Sharp Eyespot (Rhizoctonia cerealis) in recombinant inbred wheat lines from the cross Niavt 14 x Xuzhou 25. Jiang, Yanjie,Zhu, Fangfang,Cai, Shibin,Wu, Jizhong,Zhang, Qiaofeng. 2016

[6]A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv.]. Fang, Xiaomei,Wang, Xiaoqin,Liu, Rui,Liu, Xueying,Li, Man,Huang, Mengzhu,Zhang, Zhengsheng,Dong, Kongjun,Liu, Tianpeng,He, Jihong,Ren, Ruiyu,Zhang, Lei,Yang, Tianyu. 2016

[7]Cucumber (Cucumis sativus L.) seed performance as influenced by ovary and ovule position. Jing, HC,Bergervoet, JHW,Jalink, H,Klooster, M,Du, SL,Bino, RJ,Hilhorst, HWM,Groot, SPC. 2000

[8]Genome-wide identification, phylogeny and expression analysis of the lipoxygenase gene family in cucumber. Jiang, L. W.,Liu, X. H.. 2011

[9]Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.). Wang Shun-li,Ku, Seong Sub,Choi, Pil Son,Ye Xing-guo,He Cong-fen,Kwon, Suk Yoon. 2015

[10]Gibberellin A(3) pretreatment increased antioxidative capacity of cucumber radicles and hypocotyls under suboptimal temperature. Li, Qingzhu,Li, Chaohan,Shi, Qinghua,Yu, Xianchang. 2011

[11]A CsYcf54 variant conferring light green coloration in cucumber. Wang, Xin,Yang, Li,Gao, Dongli,Huang, Sanwen,Wang, Xin,Zhang, Chunzhi,Yang, Li,Gao, Dongli,Huang, Sanwen,Chen, Huiming.

[12]Molecular Mapping and Candidate Gene Analysis for Numerous Spines on the Fruit of Cucumber. Zhang, Shengping,Liu, Shulin,Miao, Han,Wang, Min,Liu, Panna,Gu, Xingfang,Wehner, Todd C..

[13]Construction of a bacterial artificial chromosome library for Gossypium herbaceum var. africanum. Gao HaiYan,WANG XingFen,LIU Fang,PENG RenHai,ZHANG Yan,CHENG Hua,WANG KunBo. 2013

[14]Construction and characterization of a bacterial artificial chromosome library for the allotetraploid Gossypium tomentosum. F. Liu,Y.H. Wang,H.Y. Gao,C.Y. Wang,Z.L. Zhou,X.Y. Cai,X.X. Wang,Z.S. Zhang,K.B. Wang. 2015

[15]A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Bai, Gui-Hua,Chen, Cui-Xia,Cai, Shi-Bin,Cai, Shi-Bin. 2008

[16]Analysis of an Applied Core Collection of Adzuki Bean Germplasm by Using SSR Markers. Wang Li-xia,Cheng Xu-zhen,Wang Su-hua,Tian Jing. 2012

[17]EST-SSR Marker-Based Assay for Purity Identification of Melon "Green Angle". Li, Ou-Jing,Chen, Xiao-Mu,Xia, Pu-Xian,Pei, Zhong-You,Wang, Yong,Lan, Qing-Kuo,Zhang, Ruo-Wei. 2015

[18]Stripe rust resistance in Chinese bread wheat cultivars and lines. Xia, X. C.,Li, Z. F.,Li, G. Q.,He, Z. H.,Li, Z. F.,Li, G. Q.,Xia, X. C.,He, Z. H.,Singh, R. P.. 2007

[19]Detection of homozygosity in near isogenic Lines of non-susceptible to Zhenjiang strain of densonucleosis virus in silkworm. Li Muwang,Hou Chengxiang,Zhao Yunpo,Xu Anying,Guo Xijie,Huang Yongping. 2007

[20]Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers. Liu, WH,Nie, H,Wang, SB,Li, X,He, ZT,Han, CG,Wang, JR,Chen, XL,Li, LH,Yu, JL. 2005

作者其他论文 更多>>