Effect of arbuscular mycorrhizal fungi on aggregate stability of a clay soil inoculating with two different host plants

文献类型: 外文期刊

第一作者: Xu, Ping

作者: Xu, Ping;Liang, Lin Zhou;Dong, Xiao Ying;Shen, Ren Fang;Xu, Ping

作者机构:

关键词: arbuscular mycorrhizal (AM) fungi;soil structure;normalized mean weight diameter (NMWD);soil organic carbon;tomato;maize

期刊名称:ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE ( 影响因子:1.694; 五年影响因子:1.568 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Reductions in pore space caused by soil compaction considerably impact soil permeability to air and water by crop roots. The inoculation of arbuscular mycorrhizal (AM) fungi to alleviate this problem has been explored around the world. A pot experiment was conducted to assess the effects of AM fungi inoculation on the growth of two crops, tomato (Solanum lycopersicum L.) and maize (Zea mays L.), and the soil structure in a clay soil (lime concretion black soil). The results showed that AM fungi inoculation increased shoot nitrogen (N) and phosphorus (P) concentrations of maize by 32.4% and 17.0%, respectively. Soil alkali-hydrolyzable N and Olsen-P were 30.1% and 29.9% higher, respectively, in inoculated maize plants than in the corresponding uninoculated treatments for 30 days. No effect of AM fungi on nutrient uptake and soil-available nutrients was found for tomato plants. The NMWD (normalized mean weight diameter, an index to evaluate soil aggregates) values for tomato and maize plants inoculated with AM fungi were 46.2% and 17.7% higher, respectively, than uninoculated plants and the same trends were detected for soil organic carbon (SOC) content. A significant positive relationship was found between SOC and NMWD, indicating that increasing SOC might be one mechanism by which AM fungi improved soil structure. Our results suggested that AM fungi might not always benefit plant growth and nutrient absorption after inoculating for 30 days, but contributed to soil structure improvement even with low colonization.

分类号: S`Q94

  • 相关文献

[1]Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: II nutrient balances and soil fertility. Wang, Xiaobin,Hoogmoed, Willem B.,Cai, Dianxiong,Perdok, Udo D.,Oenema, Oene. 2007

[2]Temporal changes in soil organic carbon contents and delta C-13 values under long-term maize-wheat rotation systems with various soil and climate conditions. Tang, Xu,Ellert, Benjamin H.,Hao, Xiying,Nakonechny, Elaine,Ma, Yibing,Li, Jumei. 2012

[3]Effects of calmodulin on DNA-binding activity of heat shock transcription factor in vitro. Li, B,Liu, HT,Mu, RL,Sun, DY,Zhou, RG.

[4]Slope aspect influences arbuscular mycorrhizal fungus communities in arid ecosystems of the Daqingshan Mountains, Inner Mongolia, North China. Liu, Min,Zheng, Rong,Bai, Shulan,Bai, Yv'e,Zheng, Rong,Wang, Jugang.

[5]Physical response of rigid and non-rigid soils to analogues of biological exudates. Peng, X.,Hallett, P. D.,Zhang, B.,Horn, R..

[6]Litter quantity confers soil functional resilience through mediating soil biophysical habitat and microbial community structure on an eroded bare land restored with mono Pinus massoniana. Zhang, Bin,Yao, Shuihong,Zhang, Bin,Wang, Huili,Yao, Shuihong,Bi, Lidong. 2013

[7]Visual assessment of soil structure: Evaluation of methodologies on sites in Canada, China and Germany Part I: Comparing visual methods and linking them with soil physical data and grain yield of cereals. Mueller, Lothar,Schindler, Uwe,Kay, Bev D.,Hu, Chunsheng,Li, Yong,Behrendt, Axel,Shepherd, T. Graham,Ball, Bruce C.. 2009

[8]Soil carbon sequestration under long-term rice-based cropping systems of purple soil in Southwest China. Chen Qing-rui,Qin Yu-sheng,Chen Kun,Tu Shi-hua,Xu Ming-gang,Zhang Wen-ju. 2015

[9]Crop yield and soil carbon responses to tillage method changes in North China. Tian, Shenzhong,Ning, Tangyuan,Liu, Zhen,Li, Geng,Li, Zengjia,Tian, Shenzhong,Ning, Tangyuan,Lal, Rattan,Wang, Yu.

[10]Occlusive effect of soil aggregates on increased soil DTPA-extractable zinc under low soil pH caused by long-term fertilization. Guo, Z.,Guo, X.,Wang, J.,Wang, D.,Guo, Z.,Guo, X.,Wang, J.,Wang, D.. 2013

[11]Traditional manual tillage significantly affects soil redistribution and CO2 emission in agricultural plots on the Loess Plateau. Geng, Yan,Yu, Hanqing,Tarafder, Mahbubul,Li, Yong,Tian, Guanglong,Tian, Guanglong,Chappell, Adrian. 2018

[12]Phytolith accumulation in broadleaf and conifer forests of northern China: Implications for phytolith carbon sequestration. Yang, Xiaomin,Song, Zhaoliang,Hao, Qian,Zhang, Xiaodong,Liu, Hongyan,Van Zwieten, Lukas,Song, Alin,Li, Zimin,Wang, Hailong,Wang, Hailong. 2018

[13]Water-Stable Aggregates and Associated Carbon in a Subtropical Rice Soil Under Variable Tillage. Liu, Xi-Hui,Chen, Qiu-Shi,Huang, Yan-Fei,He, Ming-Ju,Xu, Fang-Long,Li, Yang-Rui,Gu, Ming-Hua,Ou, Hui-Ping,Liu, Xi-Hui,Huang, Yan-Fei,Tan, Hong-Wei,Li, Yang-Rui. 2016

[14]Spatiotemporal variation of soil organic carbon in the cultivated soil layer of dry land in the South-Western Yunnan Plateau, China. Zhao, Ji-xia,Liu, Gang-cai,Zhao, Ji-xia,Dai, Fu-qiang,He, Shou-jia,Zhang, Qing. 2017

[15]Modeling the effects of farming management practices on soil organic carbon stock at a county-regional scale. Deng, Nanrong,Wang, Qi,Wang, Jing,Lv, Changhe,Yu, Haibin,Li, Wangjun,Chen, Zhao. 2018

[16]Characteristics of differently stabilised soil organic carbon fractions in relation to long-term fertilisation in Brown Earth of Northeast China. Xu, Xiangru,An, Tingting,Pei, Jiubo,Wang, Jingkuan,Xu, Xiangru,Zhang, Wenju,Xu, Minggang,Xiao, Jing,Xie, Hongtu. 2016

[17]Effects of Long-Term Organic Amendments on Soil Organic Carbon in a Paddy Field: A Case Study on Red Soil. Huang Qing-hai,Li Da-ming,Liu Kai-lou,Yu Xi-chu,Ye Hui-cai,Hu Hui-wen,Xu Xiao-lin,Wang Sai-lian,Zhou Li-jun,Duan Ying-hua,Zhang Wen-ju. 2014

[18]Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. Li Hui,Feng Wen-ting,Sun Nan,Xu Ming-gang,Li Hui,Feng Wen-ting,He Xin-hua,Zhu Ping,Gao Hong-jun. 2017

[19]Modeling Soil Organic Carbon Storage and Its Dynamics in Croplands of China. Tang Hua-jun,Qiu Jian-jun,Wang Li-gang,Li Hu,Li Chang-sheng,van Ranst, Eric. 2010

[20]Modeling the Impacts of Soil Organic Carbon Content of Croplands on Crop Yields in China. Qiu Jian-jun,Wang Li-gang,Li Hu,Tang Hua-jun,Li Chang-sheng,Van Ranst, Eric. 2009

作者其他论文 更多>>