Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice

文献类型: 外文期刊

第一作者: Gao, He

作者: Gao, He;Jin, Mingna;Zheng, Xiao-Ming;Chen, Jun;Zhang, Zhe;Sheng, Peike;Ma, Jin;Ma, Weiwei;Wang, Haiyang;Wu, Chuanyin;Wan, Jianmin;Gao, He;Zhou, Kunneng;Jiang, Ling;Liu, Shijia;Wan, Jianmin;Yuan, Dingyang;Xin, Yeyun;Deng, Huafeng;Yuan, Longping;Wang, Maoqing;Huang, Dongyi

作者机构:

关键词: rice;grain yield;flowering time;photoperiod sensitivity;DTH7

期刊名称:PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA ( 影响因子:11.205; 五年影响因子:12.291 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Success of modern agriculture relies heavily on breeding of crops with maximal regional adaptability and yield potentials. A major limiting factor for crop cultivation is their flowering time, which is strongly regulated by day length (photoperiod) and temperature. Here we report identification and characterization of Days to heading 7 (DTH7), a major genetic locus underlying photoperiod sensitivity and grain yield in rice. Map-based cloning reveals that DTH7 encodes a pseudo-response regulator protein and its expression is regulated by photoperiod. We show that in long days DTH7 acts downstream of the photoreceptor phytochrome B to repress the expression of Ehd1, an up-regulator of the "florigen" genes (Hd3a and RFT1), leading to delayed flowering. Further, we find that haplotype combinations of DTH7 with Grain number, plant height, and heading date 7 (Ghd7) and DTH8 correlate well with the heading date and grain yield of rice under different photoperiod conditions. Our data provide not only a macroscopic view of the genetic control of photoperiod sensitivity in rice but also a foundation for breeding of rice cultivars better adapted to the target environments using rational design.

分类号: N

  • 相关文献

[1]The Genetic Architecture of Flowering Time and Photoperiod Sensitivity in Maize as Revealed by QTL Review and Meta Analysis. Xu, Jie,Liu, Jian,Cao, Moju,Wang, Jing,Lan, Hai,Lu, Yanli,Pan, Guangtang,Rong, Tingzhao,Liu, Yaxi,Xu, Yunbi,Xu, Yunbi. 2012

[2]Overexpression of OsMYB1R1-VP64 fusion protein increases grain yield in rice by delaying flowering time. Wang, Jiachang,Xu, Yang,Zhang, Huan,Cai, Maohong,Wang, Chunming,Wan, Jianmin,Wu, Fuqing,Zhu, Shanshan,Cheng, Zhijun,Wang, Jiulin,Li, Chaonan,Sheng, Peike,Guo, Xiuping,Zhang, Xin,Wan, Jianmin.

[3]OsCOL16, encoding a CONSTANS-like protein, represses flowering by up regulating Ghd7 expression in rice. Wu, Weixun,Chen, Daibo,Zhang, Yingxin,Sun, Limping,Yang, Zhengfu,Zhao, Chunde,Zhan, Xiaodeng,Shen, Xihong,Yu, Ping,Fu, Yaping,Cao, Liyong,Cheng, Shihua,Wu, Weixun,Chen, Daibo,Zhang, Yingxin,Sun, Limping,Yang, Zhengfu,Zhao, Chunde,Zhan, Xiaodeng,Shen, Xihong,Yu, Ping,Fu, Yaping,Cao, Liyong,Cheng, Shihua,Zheng, Xiao-Ming,Ma, Weiwei,Zhang, Huan,Zhu, Shanshan.

[4]A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice. Sheng, Peike,Tan, Junjie,Liu, Xuanming,Sheng, Peike,Wu, Fuqing,Tan, Junjie,Zhang, Huan,Ma, Weiwei,Chen, Liping,Wang, Jiachang,Wang, Jie,Zhu, Shanshan,Guo, Xiuping,Wang, Jiulin,Zhang, Xin,Cheng, Zhijun,Wu, Chuanyin,Wan, Jianmin,Bao, Yiqun,Wan, Jianmin.

[5]Nonfunctional alleles of long-day suppressor genes independently regulate flowering time. Zheng, Xiao-Ming,Wang, Junrui,Qiao, Weihua,Zhang, Lifang,Cheng, Yunlian,Yang, Qingwen,Feng, Li. 2016

[6]Functional characterization of rice OsDof12. Li, Dejun,Yang, Chunhua,Li, Xiaobing,Gan, Qiang,Zhao, Xianfeng,Zhu, Lihuang,Li, Dejun,Yang, Chunhua,Li, Xiaobing,Gan, Qiang,Zhao, Xianfeng,Zhu, Lihuang,Li, Dejun,Yang, Chunhua,Gan, Qiang.

[7]Yield and yield component analysis of early-season rice in southern China. Mo, Hailing,Qin, Gang,Luo, Zhiyong,Zhang, Zongqiong,Chen, Caihong. 2013

[8]Improving nitrogen fertilization in rice by site-specific N management. A review. Peng, Shaobing,Buresh, Roland J.,Dobermann, Achim,Huang, Jianliang,Cui, Kehui,Zhong, Xuhua,Zou, Yingbin,Tang, Qiyuan,Yang, Jianchang,Wang, Guanghuo,Liu, Yuanying,Hu, Ruifa,Zhang, Fusuo. 2010

[9]Dissection of combining ability for yield and related traits using introgression lines in the background of a key restorer line in rice (Oryza sativa L.). Xiang, Chao,Zhang, Hongjun,Wang, Jie,Wang, Wensheng,Gao, Yongming,Wang, Hui,Xia, Jiafa,Ye, Guoyou.

[10]Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.). Xiong, Fangjie,Yu, Xiaohong,Gong, Xiaoping,Liu, Yongsheng,Luo, Juntao,Jiang, Yudong,Kuang, Haochi,Gao, Bijun,Niu, Xiangli,Liu, Yongsheng,Liu, Yongsheng.

[11]Influence of the system of rice intensification on rice yield and nitrogen and water use efficiency with different N application rates. Zhao, Limei,Wu, Lianghuan,Lu, Xinghua,Zhao, Limei,Li, Yongshan,Zhu, Defeng,Uphoff, Norman.

[12]Mapping QTLs for improving grain yield using the USDA rice mini-core collection. Li, Xiaobai,Jia, Limeng,Wu, Dianxing,Li, Xiaobai,Agrama, Hesham,Jia, Limeng,Moldenhauer, Karen,Li, Xiaobai,Yan, Wengui,Jia, Limeng,Jackson, Aaron,McClung, Anna,Shen, Xihong,Yeater, Kathleen.

[13]Recombination between DEP1 and NRT1.1B under japonica and indica genetic backgrounds to improve grain yield in rice. Zhao, Mingzhu,Zheng, Wenjing,Zhao, Mingzhu,Geng, Xin,Bi, Wenjing,Xu, Quan,Sun, Jian,Huang, Yuwei,Wang, Qingying,Xu, Zhengjin.

[14]Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.). Tong, Han-hua,Xing, Yong-zhong,Luo, Li-jun,Tong, Han-hua,Chen, Liang,Li, Wei-ping,Mei, Han-wei,Yu, Xing-qiao,Xu, Xiao-yan,Luo, Li-jun,Tong, Han-hua,Zhang, Shan-qing. 2011

[15]Review grain yield and nitrogen use efficiency in rice production regions in China. Che Sheng-guo,Zhao Bing-qiang,Li Yan-ting,Yuan Liang,Li Wei,Lin Zhi-an,Hu Shu-Wen,Shen Bing. 2015

[16]Nitrogen accumulation, remobilization and partitioning in rice (Oryza sativa L.) under an improved irrigation practice. Lin, XQ,Zhou, WJ,Zhu, DF,Chen, HZ,Zhang, YP. 2006

[17]Control of Rice Embryo Development, Shoot Apical Meristem Maintenance, and Grain Yield by a Novel Cytochrome P450. Yang, Weibing,Gao, Mingjun,Yin, Xin,Zeng, Longjun,Li, Qun,He, Zuhua,Yang, Weibing,Gao, Mingjun,Yin, Xin,Zeng, Longjun,Li, Qun,He, Zuhua,Liu, Jiyun,Wang, Junmin,Zhang, Xiaoming,Xu, Yonghan,Zhang, Shubiao.

[18]Prediction of hybrid grain yield performances in Indica Rice (Oryza sativa L.) with effect-increasing loci. Ling Yinghua,Yang Zhenglin,Zhao Fangming,Zhong Bingqiang,Sang Xianchun,He Guanghua,Zha Renming,Xie Rong.

[19]Short and erect rice (ser) mutant from Khao Dawk Mali 105' improves plant architecture. Yan, Wengui,Jia, Limeng,Jackson, Aaron,Pan, Xuhao,Hu, Biaolin,Zhang, Qijun,Jia, Limeng,Jia, Limeng,Pan, Xuhao,Yan, Zongbu,Deren, Christopher,Pan, Xuhao,Huang, Bihu.

[20]Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Li, ZK,Fu, BY,Gao, YM,Xu, JL,Ali, J,Lafitte, HR,Jiang, YZ,Rey, JD,Vijayakumar, CHM,Maghirang, R,Zheng, TQ,Zhu, LH.

作者其他论文 更多>>