Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China

文献类型: 外文期刊

第一作者: Chen, Anqiang

作者: Chen, Anqiang;Lei, Baokun;Hu, Wanli;Lu, Yao;Mao, Yanting;Duan, Zongyan;Chen, Anqiang;Shi, Zesheng

作者机构:

关键词: Ammonia volatilization;Urea nitrogen;Paddy field;NH4+-N concentration of surface water;pH of surface water;Erhai Lake Watershed

期刊名称:NUTRIENT CYCLING IN AGROECOSYSTEMS ( 影响因子:3.27; 五年影响因子:3.767 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Ammonia (NH3) volatilization was measured with the continuous airflow enclosure chamber method under different urea application amounts using pots in paddy fields in Erhai Lake Watershed, China. Several factors, such as the urea nitrogen application amount, days after fertilization, NH4 (+)-N concentration and pH of surface water, and climate, that could affect ammonia volatilization were also studied. The results indicated that ammonia volatilization loss increased linearly with increasing amounts of applied urea. The ratios of the ammonia volatilization loss to the applied nitrogen ranged from 16.59 to 18.43 % with different nitrogen application amounts. The ammonia volatilization loss peaked within the first 3 days after fertilization, which accounted for 65-82 % of the total ammonia loss in each period. We observed the following degree of the effects of various factors on ammonia volatilization: NH4 (+)-N concentration of surface water > urea application amount > pH of surface water > days after fertilization > water temperature of surface water. The wind velocity and rainfall were the key factors affecting ammonia volatilization. The model of ammonia volatilization flux was established by using the measured dates from 2013 and was represented as Y = 0.008(x(1) + x(2) + x(3)) + e(0.056x4-0.068x5)-0.623 (R (2) = 0.81, P < 0.0001). The model was verified by using the measured dates from 2012. The calculated values fitted well with the field observations. However, the model parameters need to be amended using the model to predict the ammonia volatilization flux in the rice season from other regions.

分类号: TQ44

  • 相关文献

[1]Nitrogen dynamics of anaerobically digested slurry used to fertilize paddy fields. Chen, Dingjiang,Huang, Hong,Jiang, Lina,Toyota, Koki,Dahlgren, Randy A.,Lu, Jun. 2013

[2]Comparison of blood variables, fiber intensity, and muscle metabolites in hot-boned muscles from electrical- and gas-stunned broilers. Xu, L.,Yue, H. Y.,Wu, S. G.,Zhang, H. J.,Ji, F.,Zhang, L.,Qi, G. H..

[3]Ammonia toxicity in aerobic rice: use of soil properties to predict ammonia volatilization following urea application and the adverse effects on germination. Haden, V. R.,Hobbs, P.,Duxbury, J. M.,Xiang, J.,Peng, S.,Ketterings, Q. M..

[4]Control of Nitrogen Loss during Co-Composting of Banana Stems with Chicken Manure. Wu, Chunyuan,Li, Qinfen,Zhang, Yubai. 2011

[5]An optimal regional nitrogen application threshold for wheat in the North China Plain considering yield and environmental effects. Wang, Hongyuan,Zhang, Yitao,Liu, Hongbin,Zhai, Limei,Zhang, Yitao,Chen, Anqiang,Lei, Baokun,Ren, Tianzhi.

[6]Gaseous losses of fertilizer nitrogen from a citrus orchard in the red soil hilly region of Southeast China. Ding, Hong,Zheng, Xiangzhou,Zhang, Yushu,Zhang, Jing,Ding, Hong,Chen, Deli.

[7]Modeling the fate of fertilizer N in paddy rice systems receiving manure and urea. Liang Xinqiang,Li, Yuan Jun,Liang, Li,Tian Guangming,He Miaomiao,Hua, Li. 2014

[8]Lysimeter study of nitrogen losses and nitrogen use efficiency of Northern Chinese wheat. Gu, Limin,Liu, Tiening,Wang, Jingfeng,Liu, Peng,Dong, Shuting,Zhang, Jiwang,Zhao, Bin,Gu, Limin,Liu, Tiening,Zhao, Bingqiang,Li, Juan,So, Hwat-Bing.

[9]Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Cai, GX,Chen, DL,Ding, H,Pacholski, A,Fan, XH,Zhu, ZL. 2002

[10]Field measurement of ammonia emissions after nitrogen fertilization-A comparison between micrometeorological and chamber methods. Ni, Kang,Ni, Kang,Koester, Jan Reent,Ni, Kang,Seidel, Achim,Pacholski, Andreas,Pacholski, Andreas,Koester, Jan Reent.

[11]Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation. Wang, Shaohua,Xu, Shanshan,Hou, Pengfu,Xue, Lihong,Yang, Linzhang.

[12]Nitrogen mobility, ammonia volatilization, and estimated leaching loss from long-term manure incorporation in red soil. Huang Jing,Zhang Yang-zhu,Huang Jing,Duan Ying-hua,Xu Ming-gang,Zhai Li-mei,Wang Bo-ren,Sun Nan,Huang Jing,Wang Bo-ren,Zhang Xu-bo,Gao Su-duan. 2017

[13]The fate of urea nitrogen applied to a vegetable crop rotation system. Ding, Hong,Zhang, Yushu,Hu, Xiaoxia,Zheng, Xiangzhou,Zhang, Jing,Weng, Boqi,Ding, Hong,Li, Shiqing,Ding, Hong,Chen, Deli.

[14]The characteristics of yield-scaled methane emission from paddy field in recent 35-year in China: A meta-analysis. Guo, Jia,Zhu, Yaojun,Wei, Wei,Li, Shengnan,Yu, Yilei,Guo, Jia,Zhu, Yaojun,Wei, Wei,Li, Shengnan,Yu, Yilei,Song, Zhifeng. 2017

[15]Self-propelled paddy variable boom sprayer. Wang Songlin,Wang Xiu,Zou Wei,Zhang Guoyuan. 2015

[16]Preliminary study of phosphorus runoff and drainage from a paddy field in the Taihu Basin. Zuo, QA,Lu, CA,Zhang, WL. 2003

[17]Thermal tolerance of potential Trichogramma strains for mass-production and paddy field release in the Greater Mekong Subregion. Hou, Maolin,Guo, Lei,Hou, Maolin,Hou, Maolin,Guo, Lei,Jiao, Xiaoguo,Song, Kai,Babendreier, Dirk,Zhang, Feng.

[18]CORRELATION ANALYSIS OF CH4 EMISSIONS FROM PADDY SOILS WITH CHANGES IN OXIDIZABLE ORGANIC CARBON. Huo, Lianjie,Liu, Yong,Wu, Jiamei,Ji, Xionghui,Peng, Hua,Wu, Jiamei,Ji, Xionghui,Huo, Lianjie,Peng, Hua,Liu, Yong. 2015

[19]Observational comparisons of intestinal microbiota characterizations, immune enzyme activities, and muscle amino acid compositions of loach in paddy fields and ponds in Sichuan Province. Duan, Yuanliang,Zhang, Jie,Zhao, Liulan,Du, Zongjun,Han, Shuaishuai,Zhou, Jian,Liu, Ya,Du, Jun.

[20]Aboveground morphological traits do not predict rice variety effects on CH4 emissions. Zhang, Yi,Jiang, Yu,Wang, Xiaofei,Hang, Xiaoning,Zhang, Weijian,Li, Zhijie,Zhu, Xiangchen,Deng, Aixing,Zhang, Jun,Zhang, Weijian,Chen, Jin.

作者其他论文 更多>>