Impacts of urban biophysical composition on land surface temperature in urban heat island clusters

文献类型: 外文期刊

第一作者: Guo, Guanhua

作者: Guo, Guanhua;Liu, Xiaonan;Guo, Guanhua;Liu, Xiaonan;Guo, Guanhua;Liu, Xiaonan;Wu, Zhifeng;Chen, Yingbiao;Zhang, Xiaoshi;Xiao, Rongbo

作者机构:

关键词: UHI clusters;Object-oriented segmentation;Nonlinear relationship;Urban biophysical composition;Land surface temperature

期刊名称:LANDSCAPE AND URBAN PLANNING ( 影响因子:6.142; 五年影响因子:7.96 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The spatio-temporal pattern of biophysical composition significantly affects land surface temperature (LST). Previous studies, however, mostly characterized urban heat island (UHI) clusters being spatially homogeneous. The landscape spatial heterogeneity in urban across UHI clusters challenges us to more accurately characterize the relationships between LST and corresponding urban biophysical composition. In this study, we introduced an innovative integrated approach that combined object-oriented image segmentation with local indicators of spatial autocorrelations (LISA) to extract UHI clusters from an LST image. We used a regression tree model to examine the nonlinear relationships between LST and each of three satellite-based indices within the UHI clusters: normalized differential vegetation index (NDVI), normalized differential build-up index (NDBI), and normalized difference bareness index (NDBaI). We found that both NDVI and NDBI are strongly correlated with the variations of LST whereas NDBaI has a weaker correlation with LST. We also found that the regression tree model built in this study enabled us to effectively detect the nonlinear relationship between LST and biophysical composition. Furthermore, based on a set of rules derived from a regression tree analysis, we found that urban landscapes strongly affect LST and its spatial heterogeneity within a UHI. These rules were used to detect the nonlinear impacts of complex urban biophysical composition on LST. The results of this study provided insights into how LST within UHI varies with urban surface characteristics at fine spatial scale and also a new method for investigating effects of land surface composition on LST in urbanized areas. (C) 2014 Elsevier B.V. All rights reserved.

分类号: TU98

  • 相关文献

[1]Spatio-temporal variation of alpine grassland spring phenological and its response to environment factors northeastern of Qinghai-Tibetan Plateau during 2000-2016. Li, Guangyong,Jiang, Guanghui,Li, Guangyong,Bai, Ju,Jiang, Cuihong. 2017

[2]An algorithm to retrieve land surface temperature from ASTER thermal band data for agricultural drought monitoring. Qin, Zhihao,Li, Wenjuan,Gao, Maofang,Zhang, Hong'ou,Qin, Zhihao. 2006

[3]ESTIMATION OF SURFACE SOIL MOISTURE USING FENGYUN-2E (FY-2E) DATA: A CASE STUDY OVER THE SOURCE AREA OF THE YELLOW RIVER. Wang, Yawei,Song, Xiaoning,Sun, Chuan,Liu, Xin,Leng, Pei. 2016

[4]Integrating seasonal optical and thermal infrared spectra to characterize urban impervious surfaces with extreme spectral complexity: a Shanghai case study. Wang, Wei,Ji, Minhe,Yao, Xinfeng. 2016

[5]An Algorithm for Retrieving Land Surface Temperatures Using VIIRS Data in Combination with Multi-Sensors. Xia, Lang,Mao, Kebiao,Ma, Ying,Zhao, Fen,Qin, Zhihao,Jiang, Lipeng,Shen, Xinyi. 2014

[6]An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data. Wang, Fei,Song, Caiying,Zhao, Shuhe,Qin, Zhihao,Li, Wenjuan,Karnieli, Arnon,Zhao, Shuhe. 2015

[7]Ground temperature measurement and emissivity determination to understand the thermal anomaly and its significance on the development of an arid environmental ecosystem in the sand dunes across the Israel-Egypt border. Qin, Z,Berliner, PR,Karnieli, A.

[8]Estimation of land surface emissivity for Landsat TM6 and its application to Lingxian Region in north China. Qin, Zhihao,Li, Wenjuan,Gao, Maofang,Zhang, Hong'ou,Qin, Zhihao. 2006

[9]Impacts of land use/cover change on spatial variation of land surface temperature in Urumqi, China. Pei, Huan,Qin, Zhihao,Zhang, Chunling,Lu, Liping,Qin, Zhihao,Xu, Bin,Gao, Maofang,Fang, Shifeng. 2007

[10]Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm. Rozenstein, Offer,Karnieli, Arnon,Qin, Zhihao,Derimian, Yevgeny. 2014

[11]Evaluation of ASTER-Like Daily Land Surface Temperature by Fusing ASTER and MODIS Data during the HiWATER-MUSOEXE. Yang, Guijun,Sun, Chenhong,Zhao, Chunjiang,Weng, Qihao,Weng, Qihao,Pu, Ruiliang,Gao, Feng,Li, Hua. 2016

[12]Forecasting of Powdery Mildew disease with multi-sources of remote sensing information. Zhang, Jingcheng,Yuan, Lin,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Zhang, Jingcheng,Yang, Guijun,Zhang, Jingcheng,Yang, Guijun,Zhang, Jingcheng,Yuan, Lin. 2014

[13]Comparison of split window algorithms for land surface temperature retrieval from NOAA-AVHRR data. Qin, ZH,Xu, B,Zhang, WC,Li, WJ,Chen, ZX,Zhang, HO. 2004

[14]Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data. Sun, Liang,Chen, Zhongxin,Wang, Limin,Sun, Liang,Gao, Feng,Anderson, Martha,Yang, Yun,Song, Lisheng,Hu, Bo.

作者其他论文 更多>>
  • Future Extreme Climate Events Threaten Alpine and Subalpine Woody Plants in China

    作者:Wu, Yongru;Yu, Fangyuan;Wang, Xuerong;Cao, Zheng;Xiao, Fuan;Wu, Zhifeng;Shen, Jian;Deane, David C.;Yu, Haibin;Yu, Rong;Xiao, Fuan;Wang, Tiejun

    关键词:alpine and subalpine woody plants; extreme climate events; phylogenetic diversity; protected areas; species distribution modeling; weighted endemism

  • Extracellular vesicles derived from Lactobacillus johnsonii promote gut barrier homeostasis by enhancing M2 macrophage polarization

    作者:Tao, Shiyu;Fan, Jinping;Li, Jingjing;Wu, Zhifeng;Yao, Yong;Liu, Xiangdong;Wei, Hong;Wang, Zhenyu;Wu, Yujun;Xiao, Yingping

    关键词:Diarrhea; Microbiome; Probiotics; Extracellular vesicles; Macrophage

  • Polyethylene degradation mediated by Klebsiella variicola isolated from the gut of insect larvae

    作者:Hu, Jing;Peng, Bowen;Liu, Zao;Gao, Wa;Wang, Yongze;Liu, Xiaonan;Zhao, Jinfang;Long, Tong

    关键词:Polyethylene; Biodegradation; Klebsiella variicola ZB-1; CueO; Laccase-like multicopper oxidase; Enzymatic activity

  • Investigating the Earliest Identifiable Timing of Sugarcane at Early Season Based on Optical and SAR Time-Series Data

    作者:Yang, Yingpin;Wu, Zhifeng;Wang, Dakang;Wang, Yibo;Wang, Jinnian;Yang, Xiankun;Yang, Yingpin;Zou, Jiajun;Huang, Yu;Wu, Zhifeng;Fang, Ting;Xue, Jia;Wang, Dakang;Wang, Yibo;Wang, Jinnian;Yang, Xiankun;Huang, Qiting

    关键词:sugarcane; early-season identification; time series; optical and SAR data

  • Sugarcane Phenology Retrieval in Heterogeneous Agricultural Landscapes Based on Spatiotemporal Fusion Remote Sensing Data

    作者:Yang, Yingpin;Wu, Zhifeng;Wang, Dakang;Yang, Xiankun;Wang, Yibo;Wang, Jinnian;Hou, Lu;Wang, Zongbin;Chang, Xu;Yang, Yingpin;Wu, Zhifeng;Wang, Dakang;Yang, Xiankun;Wang, Yibo;Wang, Jinnian;Hou, Lu;Wang, Zongbin;Chang, Xu;Wang, Cong;Huang, Qiting

    关键词:sugarcane; phenology retrieval; time series; remote sensing; spatiotemporal fusion; NDVI

  • Abandoned Land Mapping Based on Spatiotemporal Features from PolSAR Data via Deep Learning Methods

    作者:Yang, Yingpin;Wu, Zhifeng;Xiao, Wenju;Yang, Yingpin;Wang, Haiyun;Zhou, Ya'nan;Huang, Qiting;Wu, Tianjun;Luo, Jiancheng;Luo, Jiancheng

    关键词:abandoned land identification; PolSAR; time series; LSTM; deep learning

  • Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2024

    作者:Bao, Yiming;Zhang, Zhang;Zhao, Wenming;Xiao, Jingfa;Bu, Congfan;Zheng, Xinchang;Zhao, Xuetong;Xu, Tianyi;Bai, Xue;Jia, Yaokai;Chen, Meili;Hao, Lili;Xiao, Jingfa;Zhang, Zhang;Zhao, Wenming;Tang, Bixia;Bao, Yiming;Jin, Enhui;Wu, Gangao;Zhu, Junwei;Wang, Zhonghuang;Zhang, Sisi;Wang, Anke;Chen, Xu;Sun, Yanling;Cao, Yongrong;Tian, Dongmei;Liu, Xiaonan;Song, Shuhui;Wang, Guoliang;Wu, Song;Qu, Hongzhu;Fang, Xiangdong;Qian, Qiheng;Lu, Mingming;Fan, Zhuojing;Zheng, Xinchang;Wang, Yibo;Chen, Xiaoning;Sun, Jiani;Xiong, Zhuang;Fan, Zhuojing;Bu, Congfan;Lin, Yihao;Wu, Sicheng;Sun, Jiani;Meng, Yuyan;Jin, Enhui;Kong, Demian;Duan, Guangya;Wu, Gangao;Hao, Lili;Zhao, Wei;Jiang, Meiye;Zeng, Jingyao;Chen, Meili;Zhang, Yadong;Zhang, Yang;Zou, Dong;Ma, Yingke;Ma, Lina;Zong, Wenting;Li, Rujiao;Chen, Xu;Chen, Tingting;Dong, Lili;Yu, Caixia;Zhou, Yubo;Zhai, Shuang;Sun, Yubin;Chen, Qiancheng;Yang, Xiaoyu;Zhang, Xin;Sang, Zhengqi;Wang, Yonggang;Zhao, Yilin;Chen, Huanxin;Lan, Li;Wang, Yanqing;Qin, Yuxin;Zhou, Xinyu;Qi, Yue;Cheng, Yuanyuan;Yang, Nan;Liu, Lin;Jia, Yaokai;Zhao, Xue-Tong;Li, Cuiping;Zhang, Rongqin;Bai, Xue;Li, Lun;Zhao, Wei;Huang, Tianhao;Kang, Hailong;Xue, Yongbiao;Xu, Tianyi;Chen, Ming;Zhu, Tongtong;Pan, Rong;Cheng, Yuanyuan;Chu, Yuan;Niu, Guangyi;Chu, Yuan;Zhang, Yuansheng;Chen, Ming;Cheng, Yuanyuan;Li, Zhao;Jiang, Shuai;Yang, Fei;Li, Rujiao;Nie, Zhi;Yu, Shuhuan;Mai, Jialin;Gao, Hao;Zhang, Mochen;Zhang, Yiran;Liu, Yiyun;Li, Rujiao;Kang, Hailong;Huang, Tianhao;Chen, Xiaoning;Du, Zhenglin;Sun, Yanlin;Jiang, Shuai;Cao, Ruifang;Gao, Feng;Bao, Yiming;Zhang, Zhang;Zhao, Wenming;Xiao, Jingfa;Bu, Congfan;Zheng, Xinchang;Zhao, Xuetong;Xu, Tianyi;Bai, Xue;Jia, Yaokai;Chen, Meili;Hao, Lili;Xiao, Jingfa;Zhang, Zhang;Zhao, Wenming;Tang, Bixia;Bao, Yiming;Jin, Enhui;Wu, Gangao;Zhu, Junwei;Wang, Zhonghuang;Zhang, Sisi;Wang, Anke;Chen, Xu;Sun, Yanling;Cao, Yongrong;Tian, Dongmei;Liu, Xiaonan;Song, Shuhui;Wang, Guoliang;Wu, Song;Qu, Hongzhu;Fang, Xiangdong;Qian, Qiheng;Lu, Mingming;Fan, Zhuojing;Zheng, Xinchang;Wang, Yibo;Chen, Xiaoning;Sun, Jiani;Xiong, Zhuang;Fan, Zhuojing;Bu, Congfan;Lin, Yihao;Wu, Sicheng;Sun, Jiani;Meng, Yuyan;Jin, Enhui;Kong, Demian;Duan, Guangya;Wu, Gangao;Hao, Lili;Zhao, Wei;Jiang, Meiye;Zeng, Jingyao;Chen, Meili;Zhang, Yadong;Zhang, Yang;Zou, Dong;Ma, Yingke;Ma, Lina;Zong, Wenting;Li, Rujiao;Chen, Xu;Chen, Tingting;Dong, Lili;Yu, Caixia;Zhou, Yubo;Zhai, Shuang;Sun, Yubin;Chen, Qiancheng;Yang, Xiaoyu;Zhang, Xin;Sang, Zhengqi;Wang, Yonggang;Zhao, Yilin;Chen, Huanxin;Lan, Li;Wang, Yanqing;Qin, Yuxin;Zhou, Xinyu;Qi, Yue;Cheng, Yuanyuan;Yang, Nan;Liu, Lin;Jia, Yaokai;Zhao, Xue-Tong;Li, Cuiping;Zhang, Rongqin;Bai, Xue;Li, Lun;Zhao, Wei;Huang, Tianhao;Kang, Hailong;Xue, Yongbiao;Xu, Tianyi;Chen, Ming;Zhu, Tongtong;Pan, Rong;Cheng, Yuanyuan;Chu, Yuan;Niu, Guangyi;Chu, Yuan;Zhang, Yuansheng;Chen, Ming;Cheng, Yuanyuan;Li, Zhao;Jiang, Shuai;Yang, Fei;Li, Rujiao;Nie, Zhi;Yu, Shuhuan;Mai, Jialin;Gao, Hao;Zhang, Mochen;Zhang, Yiran;Liu, Yiyun;Guo, Xutong;Li, Rujiao;Kang, Hailong;Huang, Tianhao;Chen, Xiaoning;Du, Zhenglin;Sun, Yanlin;Jiang, Shuai;Cao, Ruifang;Gao, Feng;Bao, Yiming;Zhang, Zhang;Zhao, Wenming;Xiao, Jingfa;Bu, Congfan;Zheng, Xinchang;Zhao, Xuetong;Xu, Tianyi;Bai, Xue;Jia, Yaokai;Chen, Meili;Hao, Lili;Tang, Bixia;Jin, Enhui;Wu, Gangao;Zhu, Junwei;Wang, Zhonghuang;Zhang, Sisi;Wang, Anke;Chen, Xu;Sun, Yanling;Cao, Yongrong;Tian, Dongmei;Liu, Xiaonan;Song, Shuhui;Wang, Guoliang;Wu, Song;Qu, Hongzhu;Fang, Xiangdong;Qian, Qiheng;Lu, Mingming;Fan, Zhuojing;Wang, Yibo;Chen, Xiaoning;Sun, Jiani;Xiong, Zhuang;Lin, Yihao;Wu, Sicheng;Sun, Jiani;Meng, Yuyan;Kong, Demian;Duan, Guangya;Zhao, Wei;Jiang, Meiye;Zeng, Jingyao;Zhang, Yadong;Zhang, Yang;Zou, Dong;Ma, Yingke;Ma, Lina;Zong, Wenting;Li, Rujiao;Chen, Tingting;Dong, Lili;Yu, Caixia;Zhou, Yubo;Zhai, Shuang;Sun, Yubin;Chen, Qiancheng;Yang, Xiaoyu;Zhang, Xin;Sang, Zhengqi;Wang, Yonggang;Zhao, Yilin;Chen, Huanxin;Lan, Li;Wang, Yanqing;Qin, Yuxin;Zhou, Xinyu;Qi, Yue;Cheng, Yuanyuan;Yang, Nan;Liu, Lin;Zhao, Xue-Tong;Li, Cuiping;Zhang, Rongqin;Li, Lun;Zhao, Wei;Huang, Tianhao;Kang, Hailong;Xue, Yongbiao;Chen, Ming;Zhu, Tongtong;Pan, Rong;Cheng, Yuanyuan;Chu, Yuan;Niu, Guangyi;Zhang, Yuansheng;Li, Zhao;Jiang, Shuai;Yang, Fei;Nie, Zhi;Yu, Shuhuan;Mai, Jialin;Gao, Hao;Zhang, Mochen;Zhang, Yiran;Liu, Yiyun;Guo, Xutong;Li, Rujiao;Du, Zhenglin;Sun, Yanlin;Bao, Yiming;Zhang, Zhang;Zhao, Wenming;Xiao, Jingfa;Hao, Lili;Jin, Enhui;Wu, Gangao;Wang, Zhonghuang;Cao, Yongrong;Tang, Zhixin;Liu, Xiaonan;Song, Shuhui;Wang, Guoliang;Wu, Song;Qu, Hongzhu;Fang, Xiangdong;Qian, Qiheng;Yan, Chenghao;Li, Pan;Lei, Wenyan;Shang, Kang;Wang, Peihan;Wang, Jie;Lu, Tianyi;Wei, Haobin;Chen, Fei;Li, Hao;Li, Jiaming;Yang, Kuan;Ren, Jie;Liu, Guang-Hui;Zhang, Weiqi;Wang, Yibo;Chen, Xiaoning;Sun, Jiani;Xiong, Zhuang;Lin, Yihao;Wu, Sicheng;Sun, Jiani;Meng, Yuyan;Kong, Demian;Duan, Guangya;Lin, Shiqi;Zhao, Wei;Fang, Zhanjie;Kang, Hongen;Liu, Xinxuan;Pan, Siyu;Jia, Peilin;Jiang, Meiye;Li, Cuidan;Wei, Haobin;Jiang, Xiaoyuan;Zhang, Yang;Ni, Lingbin;Tian, Zhixi;Gao, Xinxin;Gu, Siyu;Ma, Lina;Zong, Wenting;Li, Rujiao;Qin, Yuxin;Zhou, Xinyu;Qi, Yue;Cheng, Yuanyuan;Yang, Nan;Zhang, Rongqin;Huang, Tianhao;Kang, Hailong;Xue, Yongbiao;Chen, Ming;Zhu, Tongtong;Pan, Rong;Cheng, Yuanyuan;Chu, Yuan;Zhang, Yuansheng;Li, Zhao;Nie, Zhi;Yu, Shuhuan;Mai, Jialin;Gao, Hao;Zhang, Mochen;Zhang, Yiran;Liu, Yiyun;Guo, Xutong;Yuan, Hao;Su, Tianhan;Zhang, Yong E.;He, Shunmin;Chen, Runsheng;Luo, Huaxia;Zhang, Peng;Zhang, Wanyu;Zheng, Yu;Hao, Di;Shi, Yirong;Niu, Yiwei;Song, Tingrui;Li, Yanyan;Zhang, Guoqing;Li, Yixue;Zhao, Guoping;Cao, Ruifang;Ling, Yunchao;Meng, Jiayue;He, Qinwen;Wang, Yimin;Liu, Wan;Cen, Hui;Wu, Zhile;Zhou, Chenfen;Wang, Pengyu;Zhang, Guoqing;Li, Yixue;Zhao, Guoping;Cao, Ruifang;Ling, Yunchao;Meng, Jiayue;He, Qinwen;Wang, Yimin;Liu, Wan;Cen, Hui;Wu, Zhile;Zhou, Chenfen;Wang, Pengyu;Li, Yixue;Zhao, Guoping;Zhao, Dongli;Wei, Zhiyao;Meng, Yuanguang;Zhang, Zhe;Meng, Yuanguang;Tang, Zhixin;Hu, Weijuan;Liu, Yucheng;Shen, Yanting;Yang, Xiaoyue;Liu, Shulin;Ni, Lingbin;Tian, Zhixi;Xiong, Zhuang;Li, Cuidan;Yan, Chenghao;Li, Pan;Lei, Wenyan;Shang, Kang;Wang, Peihan;Wang, Jie;Lu, Tianyi;Wei, Haobin;Chen, Fei;Lu, Tianyi;Wei, Haobin;Wang, Jie;Wang, Peihan;Chen, Fei;Yang, Fei;Li, Cuidan;Yan, Chenghao;Li, Pan;Lei, Wenyan;Shang, Kang;Wang, Peihan;Wang, Jie;Lu, Tianyi;Wei, Haobin;Chen, Fei;Li, Jiaming;Yang, Kuan;Ren, Jie;Yang, Yun-Gui;Zhang, Weiqi;Lin, Shiqi;Fang, Zhanjie;Kang, Hongen;Liu, Xinxuan;Pan, Siyu;Jia, Peilin;Lu, Tianyi;Wei, Haobin;Wang, Jie;Wang, Peihan;Chen, Fei;Huang, Yuting;Yang, Hongwei;Chen, Fei;Chen, Fei;Li, Hao;Li, Jiaming;Yang, Kuan;Ren, Jie;Yang, Yun-Gui;Zhang, Weiqi;Lin, Shiqi;Fang, Zhanjie;Kang, Hongen;Liu, Xinxuan;Pan, Siyu;Jia, Peilin;Yang, Kuan;Ren, Jie;Sun, Jiani;Wei, Haobin;Cheng, Yuanyuan;Zhang, Rongqin;Ye, Weidong;Zhang, Feng;Ren, Jie;Liu, Guang-Hui;Zhang, Weiqi;Yang, Yun-Gui;Liu, Guang-Hui;Liu, Guang-Hui;Liu, Guang-Hui;Liu, Guang-Hui;Liu, Guang-Hui;Liu, Guang-Hui;Zhang, Weiqi;Xu, Tingjun;Gao, Wenxing;Zhu, Ruixin;Xu, Tingjun;Zhu, Lixin;Zhu, Lixin;Zhu, Lixin;Zhu, Lixin;Wu, Dingfeng;Bei, Shaoqi;Yu, Fudong;Gong, Jiao;Fan, Shaohua;Xu, Shuhua;Gong, Jiao;Xu, Shuhua;Gong, Jiao;Xu, Shuhua;Gao, Xinxin;Chen, Kai;Xiong, Jie;Yang, Fangdian;Jiang, Chuanqi;Wang, Guangying;Gu, Siyu;Zhang, Peng;Luo, Shuai;Huang, Kaiyao;Miao, Wei;Xiong, Jie;Gao, Xiaoxuan;Huang, Kaiyao;Miao, Wei;Miao, Wei;Wu, Zhile;Zhou, Haokui;Chen, Shuo;Yang, Xilan;Yang, Sen;Xie, Jianbo;Yang, Sen;Xie, Jianbo;Yang, Sen;Xie, Jianbo;Zhou, Xinyu;Yang, Nan;Zhao, Yongbing;He, Shuang;Xia, Zhiqiang;Wang, Wenquan;Zhou, Xincheng;Chao, Jinquan;Tian, Weimin;Jin, Weiwei;Gong, Jing;Niu, Xiaohui;Li, Jiang;Yang, Qing-Yong;Shen, Wen-Kang;Guo, An-Yuan;Liu, Dan;Zhang, Chi;Xue, Yu;Gou, Yujie;Chen, Miaomiao;Peng, Di;Xu, Danyang;Peng, Jianzhen;Wei, Yuxiang;Xiao, Leming;Liu, Chun-Jie;Xie, Gui-Yan;Zhang, Qiong;Fu, Shanshan;Zhao, Miaoying;Tang, Dachao;Zhang, Weizhi;Luo, Mei;Miao, Ya-Ru;Huang, Xinhe;Feng, Zihao;Xie, Guiyan;Han, Cheng;Tang, Qing;Zuo, Zhixiang;Ren, Jian;Xie, Yubin;Luo, XiaoTong;Zhang, Xinxin;Xiao, Yun;Li, Xia;Zhao, Zheng;Jiang, Tao;Wu, Wanying;Zhao, Fangqing;Meng, Xianwen;Chen, Ming;Zhou, Yincong;Yuan, Chunhui;Wu, Wenyi;Chen, Ming;Luo, Hao;Gao, Feng;Luo, Hao;Gao, Feng;Luo, Hao;Gao, Feng;Luo, Hao;Gao, Feng;Yuan, Hao;Su, Tianhan;Zhang, Yong E.;Yuan, Hao;Su, Tianhan;Zhang, Yong E.;Zhang, Yong E.;Guo, Guoji;Liao, Xingyu;Gao, Xin;Liao, Xingyu;Wang, Jianxin;Yang, Dechang;Tian, Feng;Gao, Ge;Yang, Dechang;Tian, Feng;Gao, Ge;Cui, Qinghua;Cui, Qinghua;Qi, Juntian;Li, Chuan-Yun;Liu, Bo;Yang, Jian

    关键词: