OsEXPB2, a beta-expansin gene, is involved in rice root system architecture

文献类型: 外文期刊

第一作者: Wenwen, Yihao

作者: Wenwen, Yihao;Zang, Guangchao;Kang, Zhenhui;Huang, Junli;Wang, Guixue;Zhang, Zhiyong

作者机构:

关键词: Expansins;OsEXPB2;Root system architecture;Plant development

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Expansins are cell wall loosening proteins which generally play important roles as endogenous regulators in plants. Here we report a rice (Oryza sativa L.) beta-expansin gene, OsEXPB2, which encodes a 28.6-kDa protein of 261 amino acids. Sequence alignment revealed that the N-terminal and C-terminal of OsEXPB2 share six discontinuous cysteine residues and four intermittent tryptophan residues, respectively. The OsEXPB2 promoter contains conserved root hair-specific elements. Subcellular localization assay revealed that OsEXPB2 was localized in the cell wall. Analysis of spatial and temporal expression patterns demonstrated that OsEXPB2 was predominantly expressed in root of rice. OsEXPB2 expression levels were up-regulated by abiotic stresses, such as phosphate or iron deficiency, and also suppressed by abscisic acid. A clear difference was observed between RNA interference (RNAi) lines and wildtype in root system architecture and plant height, and the suppression of OsEXPB2 resulted in a visible alteration of the width of the leaf blade. Anatomical analysis found that the cell size of root cortical cells in OsEXPB2-suppressed lines was significantly smaller than that of their counterparts in wild-type plants. Furthermore, cryo-scanning electron microscopy analysis showed that the development of root hair was suppressed in RNAi lines. All these results suggest that OsEXPB2 is a root-predominant gene with a key role in root-hair formation and has the potential to be utilized in transgenic root breeding to improve abiotic stress tolerance.

分类号: Q94

  • 相关文献

[1]Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. Gu, Riliang,Chen, Fanjun,Long, Lizhi,Cai, Hongguang,Liu, Zhigang,Yang, Jiabo,Wang, Lifeng,Mi, Guohua,Zhang, Fusuo,Yuan, Lixing,Gu, Riliang,Li, Huiyong,Li, Junhui,Cai, Hongguang,Wang, Lifeng,Li, Huiyong. 2016

[2]LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. Wang, Lingling,Guo, Mengxue,Li, Yong,Ruan, Wenyuan,Mo, Xiaorong,Wu, Zhongchang,Mao, Chuanzao,Sturrock, Craig J.,Yu, Hao,Yu, Hao,Lu, Chungui,Peng, Jinrong,Ruan, Wenyuan. 2018

[3]The Function of LPR1 is Controlled by an Element in the Promoter and is Independent of SUMO E3 Ligase SIZ1 in Response to Low Pi Stress in Arabidopsis thaliana. Wang, Xuemin,Du, Guankui,Wang, Xuming,Meng, Yijun,Li, Yiyi,Wu, Ping,Yi, Keke,Wang, Xuemin,Du, Guankui,Meng, Yijun,Wu, Ping,Yi, Keke,Du, Guankui,Meng, Yijun,Wu, Ping,Yi, Keke,Wang, Xuming. 2010

[4]Breeding of disease-resistant seedless grapes using Chinese wild Vitis spp. I. In vitro embryo rescue and plant development. Tian, Lili,Wang, Yuejin,Tang, Dongmei,Tian, Lili,Wang, Yuejin,Tang, Dongmei,Tian, Lili,Wang, Yuejin,Tang, Dongmei,Niu, Liang. 2008

[5]Calreticulin: conserved protein and diverse functions in plants. Jia, Xiao-Yun,He, Li-Heng,Li, Run-Zhi,Jia, Xiao-Yun,Jing, Rui-Lian.

[6]Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Wan, Liyun,Wu, Yanshan,Huang, Jiaquan,Lei, Yong,Yan, Liying,Jiang, Huifang,Liao, Boshou,Dai, Xiaofeng,Zhang, Juncheng,Varshney, Rajeev K..

[7]UBIQUITIN-SPECIFIC PROTEASES function in plant development and stress responses. Zhou, Huapeng,Cai, Jingqing,Zhao, Jinfeng,Patil, Suyash B..

[8]Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat. Zhang, Jinpeng,Liu, Weihua,Yang, Xinming,Gao, Ainong,Li, Xiuquan,Wu, Xiaoyang,Li, Lihui.

[9]The RICE MINUTE-LIKE1 (RML1) gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice. Zheng, Ming,Wang, Yihua,Liu, Xi,Sun, Juan,Wang, Yunlong,Xu, Yang,Lv, Jia,Long, Wuhua,Zhu, Xiaopin,Jiang, Ling,Wang, Chunming,Wan, Jianmin,Guo, Xiuping,Wan, Jianmin.

[10]Antagonistic HLH/bHLH Transcription Factors Mediate Brassinosteroid Regulation of Cell Elongation and Plant Development in Rice and Arabidopsis. Zhang, Li-Ying,Bai, Ming-Yi,Zhu, Jia-Ying,Wang, Hao,Wang, Wenfei,Zhao, Jun,Yang, Hongjuan,Xu, Yunyuan,Lin, Wen-Hui,Chong, Kang,Wang, Zhi-Yong,Zhang, Li-Ying,Zhu, Jia-Ying,Wang, Hao,Wang, Wenfei,Zhao, Jun,Bai, Ming-Yi,Sun, Yu,Wang, Zhi-Yong,Wu, Jinxia,Zhang, Zhiguo,Sun, Xuehui,Lu, Tiegang,Kim, Soo-Hwan,Fujioka, Shozo.

[11]Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants. Lu, Y,Wassmann, R,Neue, HU,Huang, C.

[12]Transcriptional Modulation of Ethylene Response Factor Protein JERF3 in the Oxidative Stress Response Enhances Tolerance of Tobacco Seedlings to Salt, Drought, and Freezing. Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng,Wu, Lijun,Wang, Xue-Chen,Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng,Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng.

[13]Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Cai, Hongguang,Chu, Qun,Yuan, Lixing,Liu, Jianchao,Chen, Xiaohui,Chen, Fanjun,Mi, Guohua,Zhang, Fusuo,Cai, Hongguang.

[14]Transcriptomics Analysis Identified Candidate Genes Colocalized with Seed Dormancy QTLs in Rice (Oryza sativa L.). Qin, Huaide,Xie, Kun,Jiang, Ling,Wan, Jianmin,Wu, Fuqing,Cheng, Zhijun,Guo, Xiuping,Zhang, Xin,Wang, Jie,Lei, Cailin,Wang, Jiulin,Mao, Long,Wan, Jianmin.

[15]Functional analysis of GUS expression patterns and T-DNA integration characteristics in rice enhancer trap lines. Peng, H,Huang, HM,Yang, YZ,Zhai, Y,Wu, JX,Huang, DF,Lu, TG.

[16]LAX PANICLE2 of Rice Encodes a Novel Nuclear Protein and Regulates the Formation of Axillary Meristems. Hattori, Susumu,Omae, Minami,Shimizu-Sato, Sae,Sato, Yutaka,Tabuchi, Hiroaki,Zhang, Yu,Xie, He,Fang, Xiaohua,Chen, Fan,Oikawa, Tetsuo,Qian, Qian,Nishimura, Minoru,Kitano, Hidemi,Yoshida, Hitoshi,Kyozuka, Junko,Sato, Yutaka.

[17]SHALLOT-LIKE1 Is a KANADI Transcription Factor That Modulates Rice Leaf Rolling by Regulating Leaf Abaxial Cell Development. Xu, Qian,Xue, Hong-Wei,Zhang, Guang-Heng,Zhu, Xu-Dong,Qian, Qian.

[18]Unconditional and Conditional Quantitative Trait Loci Mapping for Plant Height in Nonheading Chinese Cabbage. Yi, Ying,Hou, Xilin,Geng, Jianfeng,Zhang, Xiao Wei,Yi, Ying,Hou, Xilin.

[19]The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. Li, Zhuofu,Zhang, Lixia,Yu, Yanwen,Quan, Ruidang,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng,Li, Zhuofu,Zhang, Lixia,Yu, Yanwen,Quan, Ruidang,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng.

[20]Long-day effects on the terminal inflorescence development of a photoperiod-sensitive soybean [Glycine max (L.) Merr.] variety. Jiang, Yan,Wu, Cunxiang,Hu, Po,Hou, Wensheng,Han, Tianfu,Jiang, Yan,Zu, Wei,Zhang, Lingxiao.

作者其他论文 更多>>