Involvement of threonine deaminase FgIlv1 in isoleucine biosynthesis and full virulence in Fusarium graminearum

文献类型: 外文期刊

第一作者: Liu, Xin

作者: Liu, Xin;Xu, Jianhong;Wang, Jian;Ji, Fang;Yin, Xianchao;Shi, Jianrong

作者机构:

关键词: Threonine dehydratase;Fusarium graminearum;Isoleucine biosynthesis;FgILV1;Virulence

期刊名称:CURRENT GENETICS ( 影响因子:3.886; 五年影响因子:3.697 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In this study we characterized FgIlv1, a homologue of the Saccharomyces cerevisiae threonine dehydratase (TD) from the important Fusarium head blight fungus Fusarium graminearum. TD catalyzes the first step in the biosynthesis pathway of isoleucine (Ile) for conversion of threonine (Thr) to 2-ketobutyrate (2-KB). The FgILV1 deletion mutant Delta FgIlv1-3 was unable to grow on minimal medium or fructose gelatin agar which lacked Ile. Exogenous supplementation of Ile or 2-KB but not Thr rescued the mycelial growth defect of Delta FgIlv1-3, indicating the involvement of FgIlv1 in the conversion of Thr to 2-KB in Ile biosynthesis. Additionally, exogenous supplementation of Methionine (Met) could also rescue the mycelial growth defect of Delta FgIlv1-3, indicating a crosstalk between Ile biosynthesis and Met catabolism in F. graminearum. Deletion of FgILV1 also caused defects in conidial formation and germination. In addition, Delta FgIlv1-3 displayed decreased virulence on wheat heads and a low level of deoxynivalenol (DON) production in wheat kernels. Taken together, results of this study indicate that FgIlv1 is an essential component in Ile biosynthesis and is required for various cellular processes including mycelial and conidial morphogenesis, DON biosynthesis, and full virulence in F. graminearum. Our data indicate the potential of targeting Ile biosynthesis for anti-FHB management.

分类号: Q3

  • 相关文献

[1]Functional analysis of the Fusarium graminearum phosphatome. Yun, Yingzi,Liu, Zunyong,Yin, Yanni,Chen, Yun,Ma, Zhonghua,Jiang, Jinhua,Xu, Jin-Rong,Xu, Jin-Rong.

[2]Determination of deoxynivalenol (DON) and its derivatives: Current status of analytical methods. Ran, Ran,Wang, Canhua,Zhang, Dabing,Shi, Jianxin,Han, Zheng,Wu, Aibo. 2013

[3]Change of Defensive-related Enzyme in Wheat Crown Rot Seedlings Infected by Fusarium graminearum. Zhang, P.,Zhou, M. P.,Zhang, X.,Huo, Y.,Ma, H. X.. 2013

[4]Transcriptome-Based Discovery of Fusarium graminearum Stress Responses to FgHV1 Infection. Zhang, Jingze,Li, Pengfei,Qiu, Dewen,Guo, Lihua,Wang, Shuangchao. 2016

[5]Simultaneous determination of deoxynivalenol, and 15-and 3-acetyldeoxynivalenol in cereals by HPLC-UV detection. Yang, D.,Geng, Z. M.,Yao, J. B.,Zhang, X.,Zhang, P. P.,Ma, H. X.. 2013

[6]Enzyme-Linked Immunosorbent-Assay for Deoxynivalenol (DON). Ji, Fang,Li, Hua,Xu, Jianhong,Shi, Jianrong. 2011

[7]Fusarium graminearum growth inhibition due to glucose starvation caused by osthol. Shi, Zhiqi,Shen, Shouguo,Zhou, Wei,Wang, Fei,Fan, Yongjian. 2008

[8]A novel virus in the family Hypoviridae from the plant pathogenic fungus Fusarium graminearum. Liu, Liang,Guo, Lihua,Qiu, Dewen,Kondo, Hideki.

[9]Genetic Relationships, Carbendazim Sensitivity and Mycotoxin Production of the Fusarium Graminearum Populations from Maize, Wheat and Rice in Eastern China. Qiu, Jianbo,Shi, Jianrong. 2014

[10]Comparative proteomics analysis of young spikes of wheat in response to Fusarium graminearum infection. Ding, Lina,Li, Ming,Cao, Jun,Li, Peng. 2017

[11]Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Li, Zhao,Zhang, Zengyan,Du, Lipu,Xu, Huijun,Xin, Zhiyong,Li, Zhao,Zhou, Miaoping,Ren, Lijuan,Zhang, Boqiao.

[12]Molecular characterization of a novel mycovirus of the family Tymoviridae isolated from the plant pathogenic fungus Fusarium graminearum. Lin, Yanhong,Zhang, Hailong,Wang, Shuangchao,Qiu, Dewen,Guo, Lihua.

[13]Optimization for the Production of Deoxynivalenol and Zearalenone by Fusarium graminearum Using Response Surface Methodology. Wu, Li,Qiu, Lijuan,Zhang, Huijie,Sun, Juan,Hu, Xuexu,Wang, Bujun,Wu, Li,Zhang, Huijie,Sun, Juan,Hu, Xuexu,Wang, Bujun. 2017

[14]Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. Zhang, Hailong,Chen, Xiaoguang,Qiu, Dewen,Guo, Lihua.

[15]Size-Dependent Effect of Prochloraz-Loaded mPEG-PLGA Micro- and Nanoparticles. Zhang, Jiakun,Liu, Yajing,Cao, Lidong,Huang, Qiliang,Zhang, Jiakun,Zhao, Caiyan,Wu, Yan.

[16]Molecular cytogenetic analysis of a durum wheat x Thinopyrum distichum hybrid used as a new source of resistance to Fusarium head blight in the greenhouse. Chen, Q,Eudes, F,Conner, RL,Graf, R,Comeau, A,Collin, J,Ahmad, F,Zhou, R,Li, H,Zhao, Y,Laroche, A. 2001

[17]Effects of plant height on type I and type II resistance to fusarium head blight in wheat. Yan, W.,Li, H. B.,Liu, C. J.,Yan, W.,Cai, S. B.,Ma, H. X.,Rebetzke, G. J.,Liu, C. J..

[18]Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum. Zhang, Leigang,Li, Baicun,Zhang, Yu,Jia, Xiaojing,Zhou, Mingguo,Zhang, Leigang,Li, Baicun,Zhang, Yu,Jia, Xiaojing,Zhou, Mingguo,Zhang, Leigang.

[19]Characterization of Fusarium head blight resistance in a CIMMYT synthetic-derived bread wheat line. Zhu, Zhanwang,Gao, Chunbao,Zhu, Zhanwang,Bonnett, David,Ellis, Marc,He, Xinyao,Heslot, Nicolas,Dreisigacker, Susanne,Singh, Pawan,Heslot, Nicolas,Bonnett, David.

[20]Expression profiling identifies differentially expressed genes associated with the fusarium head blight resistance QTL 2DL from the wheat variety Wuhan-1. Long, XiangYu,Balcerzak, Margaret,Gulden, Sigrun,Cao, Wenguang,Fedak, George,Ouellet, Therese,Long, XiangYu,Wei, Yu-Ming,Zheng, You-Liang,Somers, Daryl.

作者其他论文 更多>>