Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or continuing growth

文献类型: 外文期刊

第一作者: Zhao, Pingjuan

作者: Zhao, Pingjuan;Li, Chunqiang;Wang, Bin;Guo, Xin;Peng, Ming;Zhao, Pingjuan;Liu, Pei;Shao, Jiaofang;Yan, Bin;Xia, Yiji;Li, Chunqiang;Peng, Ming;Xia, Yiji

作者机构:

关键词: Cassava;cyanogenic glycosides;drought-responsive protein;drought tolerance;proteomics;stress response

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Cassava is one of the most drought-tolerant crops, however, the underlying mechanism for its ability to survive and produce under drought remains obscure. In this study, two cassava cultivars, SC124 and Arg7, were treated by gradually reducing the soil water content. Their responses to the drought stress were examined through their morphological and physiological traits and isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis. SC124 plants adapted a 'survival' mode under mild drought stress as evidenced by early stomatal closure and a reduction in the levels of various photosynthetic proteins and photosynthetic capacity, resulting in early growth quiescence. In contrast, Arg7 plants underwent senescence of older leaves but continued to grow, although at a reduced rate, under mild drought. SC124 plants were more capable of surviving prolonged severe drought than Arg7. The iTRAQ analysis identified over 5000 cassava proteins. Among the drought-responsive proteins identified in the study were an aquaporin, myo-inositol 1-phosphate synthases, and a number of proteins involved in the antioxidant systems and secondary metabolism. Many proteins that might play a role in signalling or gene regulation were also identified as drought-responsive proteins, which included several protein kinases, two 14-3-3 proteins, several RNA-binding proteins and transcription factors, and two histone deacetylases. Our study also supports the notion that linamarin might play a role in nitrogen reallocation in cassava under drought.

分类号: Q94

  • 相关文献

[1]A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. Liu, Pei,Xu, Zhao-Shi,Lu, Pan-Pan,Hu, Di,Chen, Ming,Li, Lian-Cheng,Ma, You-Zhi. 2013

[2]The effect of stocking density on growth and seven physiological parameters with assessment of their potential as stress response indicators for the Atlantic salmon (Salmo salar). Liu, Baoliang,Liu, Ying,Liu, Baoliang,Wang, Xianping. 2015

[3]TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Mao, Xinguo,Zhang, Hongying,Qian, Xueya,Li, Ang,Zhao, Guangyao,Jing, Ruilian.

[4]Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Mao, Xinguo,Jia, Dongsheng,Li, Ang,Zhang, Hongying,Tian, Shanjun,Jia, Jizeng,Jing, Ruilian,Mao, Xinguo,Jia, Dongsheng,Li, Ang,Zhang, Hongying,Tian, Shanjun,Jia, Jizeng,Jing, Ruilian,Jia, Dongsheng,Zhang, Hongying,Zhang, Xiaoke.

[5]Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Wan, Liyun,Wu, Yanshan,Huang, Jiaquan,Lei, Yong,Yan, Liying,Jiang, Huifang,Liao, Boshou,Dai, Xiaofeng,Zhang, Juncheng,Varshney, Rajeev K..

[6]A Novel Pepper (Capsicum annuum L.) WRKY Gene, CaWRKY30, Is Involved in Pathogen Stress Responses. Zheng Jingyuan,Mao Zhenchuan,Xie Bingyan,Zheng Jingyuan,Zou Xuexiao.

[7]Effects of repeated handling and air exposure on the immune response and the disease resistance of gibel carp (Carassius auratus gibelio) over winter. Yang, Bingyuan,Tu, Yongqin,Hu, Huihua,Han, Dong,Zhu, Xiaoming,Jin, Junyan,Yang, Yunxia,Xie, Shouqi,Yang, Bingyuan,Tu, Yongqin,Hu, Huihua,Wang, Cuicui,Han, Dong.

[8]Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Zhang, Gaiyun,Chen, Xueping,Guo, Jiaming,Chen, Ming,Xu, Zhaoshi,Li, Liancheng,Ma, Youzhi.

[9]Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.). Li, Zhenyi,Long, Ruicai,Zhang, Tiejun,Wang, Zhen,Zhang, Fan,Yang, Qingchuan,Kang, Junmei,Sun, Yan.

[10]Functions of the ERF transcription factor family in plants. Xu, Zhao-Shi,Chen, Ming,Li, Lian-Cheng,Ma, You-Zhi.

[11]Genome-Wide Analysis of the C3H Zinc Finger Transcription Factor Family and Drought Responses of Members in Aegilops tauschii. Jiang, An-Long,Xu, Zhao-Shi,Zhao, Guang-Yao,Cui, Xiao-Yu,Chen, Ming,Li, Lian-Cheng,Ma, You-Zhi.

[12]Functional identification of apple MdJAZ2 in Arabidopsis with reduced JA-sensitivity and increased stress tolerance. An, Xiu-Hong,Li, En-Mao,Xu, Kai,Cheng, Cun-Gang,Hao, Yu-Jin.

[13]Genome-wide identification, expression profiling, and SSR marker development of the bZIP transcription factor family in Medicago truncatula. Zhang, Zhengshe,Liu, Wenxian,Liu, Zhipeng,Xie, Wengang,Wang, Yanrong,Qi, Xiao,Qi, Xiao.

[14]Comparative Transcriptional Profiling of Melatonin Synthesis and Catabolic Genes Indicates the Possible Role of Melatonin in Developmental and Stress Responses in Rice. Wei, Yunxie,Zeng, Hongqiu,He, Chaozu,Shi, Haitao,Hu, Wei,Chen, Lanzhen. 2016

[15]Roles of the bZIP gene family in rice. E, Z. G.,Zhang, Y. P.,Wang, L.,Wang, L.,Zhou, J. H.,Zhou, J. H.. 2014

[16]Abscisic Acid Antagonizes Ethylene Production through the ABI4-Mediated Transcriptional Repression of ACS4 and ACS8 in Arabidopsis. Dong, Zhijun,Tang, Saijun,Dong, Zhijun,Yu, Yanwen,Li, Shenghui,Wang, Juan,Huang, Rongfeng,Dong, Zhijun,Wang, Juan,Huang, Rongfeng. 2016

[17]Identification and functional characterization of the NAC gene promoter from Populus euphratica. Wang, Jun-Ying,Wang, Jun-Ping,Yang, Hai-Feng.

[18]The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. Li, Zhuofu,Zhang, Lixia,Yu, Yanwen,Quan, Ruidang,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng,Li, Zhuofu,Zhang, Lixia,Yu, Yanwen,Quan, Ruidang,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng.

[19]Chlorpyrifos-induced stress response in the chlorpyrifos-degrader Klebsiella sp CPK. Wang, Shenghui,Li, Kang,Qu, Jie,Shi, Yanhua,Yan, Yanchun,Wang, Shenghui,Zhang, Chen.

[20]Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Qiao, Weihua,Li, Chaonan,Fan, Liu-Min.

作者其他论文 更多>>