Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis

文献类型: 外文期刊

第一作者: Zhao, Yanting

作者: Zhao, Yanting;Liu, Yuanyuan;Miao, Huiying;Cai, Congxi;Shao, Zhiyong;Guo, Rongfang;Sun, Bo;Jia, Chengguo;Zhang, Liping;Wang, Qiaomei;Wang, Jiansheng;Gigolashvili, Tamara;Gigolashvili, Tamara

作者机构:

关键词: indole glucosinolates;fumonisin B1;myrosinase-dependent hydrolysis;programmed cell death;reactive oxygen species;antioxidant activity

期刊名称:PLANT JOURNAL ( 影响因子:6.417; 五年影响因子:7.627 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The mycotoxin fumonisin B1 (FB1) causes the accumulation of reactive oxygen species (ROS) which then leads to programmed cell death (PCD) in Arabidopsis. In the process of studying FB1-induced biosynthesis of glucosinolates, we found that indole glucosinolate (IGS) is involved in attenuating FB1-induced PCD. Treatment with FB1 elevates the expression of genes related to the biosynthesis of camalexin and IGS. Mutants deficient in aliphatic glucosinolate (AGS) or camalexin biosynthesis display similar lesions to Col-0 upon FB1 infiltration; however, the cyp79B2 cyp79B3 double mutant, which lacks induction of both IGS and camalexin, displays more severe lesions. Based on the fact that the classic myrosinase -thioglucoside glucohydrolase (TGG)-deficient double mutant tgg1 tgg2, rather than atypical myrosinase-deficient mutant pen2-2, is more sensitive to FB1 than Col-0, and the elevated expression of TGG1, but not of PEN2, correlates with the decrease in IGS, we conclude that TGG-dependent IGS hydrolysis is involved in FB1-induced PCD. Indole-3-acetonitrile (IAN) and indole-3-carbinol (I3C), the common derivatives of IGS, were used in feeding experiments, and this rescued the severe cell death phenotype, which is associated with reduced accumulation of ROS as well as increased activity of antioxidant enzymes and ROS-scavenging ability. Despite the involvement of indole-3-acetic acid (IAA) in restricting FB1-induced PCD, feeding of IAN and I3C attenuated FB1-induced PCD in the IAA receptor mutant tir1-1 just as in Col-0. Taken together, our results indicate that TGG-catalyzed breakdown products of IGS decrease the accumulation of ROS by their antioxidant behavior, and attenuate FB1 induced PCD in an IAA-independent way.

分类号: Q94

  • 相关文献

[1]Sulfated lentinan induced mitochondrial dysfunction leads to programmed cell death of tobacco BY-2 cells. Wang, Jie,Shen, Lili,Qian, Yumei,Yang, Jinguang,Wang, Fenglong,Wang, Yaofeng.

[2]Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Liu, Yong-Hua,Offler, Christina E.,Ruan, Yong-Ling,Liu, Yong-Hua. 2013

[3]The diversity of nitric oxide function in plant responses to metal stress. He, Longfei,Gu, Minghua,He, Huyi.

[4]Cloning and characterization of a gene encoding cysteine proteases from senescent leaves of Gossypium hirsutum. Shen, FF,Yu, SX,Han, XL,Fan, SL.

[5]The expression pattern of a rice proteinase inhibitor gene OsPI8-1 implies its role in plant development. Wang, Jiang,Shi, Zhen-Ying,Wan, Xin-Shan,Zhang, Jing-Liu,Shen, Ge-Zhi. 2008

[6]Nitric oxide suppresses aluminum-induced programmed cell death in peanut (Arachis hypoganea L.) root tips by improving mitochondrial physiological properties. Huang, Wenjing,Oo, Thet Lwin,Gu, Minghua,Zhan, Jie,Wang, Aiqin,He, Long-Fei,He, Huyi,He, Long-Fei. 2018

[7]Programmed cell death in relation to petal senescence in ornamental plants. Zhou, Y,Wang, CY,Ge, H,Hoeberichts, FA,Visser, PB. 2005

[8]iTRAQ Mitoproteome Analysis Reveals Mechanisms of Programmed Cell Death in Arabidopsis thaliana Induced by Ochratoxin A. Xu, Wentao,Luo, Yunbo,Huang, Kunlun,Wang, Yan,Wang, Yan,Peng, Xiaoli,Yang, Zhuojun,Zhao, Weiwei,Xu, Wentao,Hao, Junran,Wu, Weihong,Shen, Xiao Li,Luo, Yunbo,Huang, Kunlun,Peng, Xiaoli,Shen, Xiao Li. 2017

[9]Comparative transcriptomics provide insight into the morphogenesis and evolution of fistular leaves in Allium. Liu, Touming. 2017

[10]Programmed cell death is responsible for replaceable bud senescence in chestnut (Castanea mollissima BL.). Wang, Guangpeng,Zhang, Zhihong,Zhao, Guiling,Wang, Guangpeng,Kong, Dejun,Liu, Qingxiang. 2012

[11]Hydrogen peroxide production and mitochondrial dysfunction contribute to the fusaric acid-induced programmed cell death in tobacco cells. Jiao, Jiao,Sun, Ling,Hao, Yu,Zhu, Xiaoping,Liang, Yuancun,Zhou, Benguo,Gao, Zhengliang. 2014

[12]Genome-wide identification and expression analysis of the metacaspase gene family in Hevea brasiliensis. Liu, Hui,Deng, Zhi,Li, Dejun,Chen, Jiangshu,Wang, Sen,Hao, Lili.

[13]Comparative Transcriptomic Analysis Reveals That Ethylene/H2O2-Mediated Hypersensitive Response and Programmed Cell Death Determine the Compatible Interaction of Sand Pear and Alternaria alternata. Wang, Hong,Lin, Jing,Chang, Youhong,Jiang, Cai-Zhong,Jiang, Cai-Zhong. 2017

[14]Suppression of OsVPE3 Enhances Salt Tolerance by Attenuating Vacuole Rupture during Programmed Cell Death and Affects Stomata Development in Rice. Lu, Wenyun,Guo, Fu,Wang, Mingqiang,Zeng, Zhanghui,Han, Ning,Yang, Yinong,Zhu, Muyuan,Bian, Hongwu,Deng, Minjuan,Yang, Yinong,Yang, Yinong. 2016

[15]Identification and analysis of the metacaspase gene family in tomato. Liu, Hui,Liu, Jian,Wei, Yongxuan.

[16]Nitric Oxide Content in Wheat Leaves and Its Relation to Programmed Cell Death of Main Stem and Tillers Under Different Nitrogen Levels. Guo Jun-xiang,Chen Er-ying,Yin Yan-ping,Wang Ping,Li Yong,Chen Xiao-guang,Wu Guang-lei,Wang Zhen-lin,Chen Xiao-guang. 2013

[17]Bcl-2 suppresses hydrogen peroxide-induced programmed cell death via OsVPE2 and OsVPE3, but not via OsVPE1 and OsVPE4, in rice. Deng, Minjuan,Bian, Hongwu,Xie, Yakun,Kim, Yongho,Wang, Wenzhe,Lin, Erpei,Zeng, Zhanghui,Guo, Fu,Han, Ning,Wang, Junhui,Zhu, Muyuan,Pan, Jianwei,Qian, Qian. 2011

[18]Tungstate: is it really a specific nitrate reductase inhibitor in plant nitric oxide research?. Xiong, Jie,Fu, Guanfu,Yang, Yongjie,Tao, Longxing,Yang, Yongjie,Zhu, Cheng.

[19]Proteomic analysis of PEG-simulated drought stress-responsive proteins of rice leaves using a pyramiding rice line at the seedling stage. Xiong, Jian-Hua,Li, Yang-Sheng,Xiong, Jian-Hua,Fu, Bin-Ying,Xu, Hua-Xue.

[20]Plant ERD2-like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity. Li, Sizhun,Xie, Ke,Zhang, Qiang,Wang, Yan,Tang, Yang,Liu, Dong,Liu, Yule,Hong, Yiguo,He, Chenyang. 2012

作者其他论文 更多>>