An Integrated Quantitative Method to Simultaneously Monitor Soil Erosion and Non-Point Source Pollution in an Intensive Agricultural Area

文献类型: 外文期刊

第一作者: Ma Li

作者: Ma Li;Bu Zhao-Hong;Wu Yong-Hong;Xia Li-Zhong;Yang Lin-Zhang;Kerr, P. G.;Garre, S.;Yang Lin-Zhang

作者机构:

关键词: nutrient load;soil particles;spatial variation;vegetation coverage;water runoff

期刊名称:PEDOSPHERE ( 影响因子:3.911; 五年影响因子:4.814 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In China, some areas with intensive agricultural use are facing serious environmental problems caused by non-point source pollution (NPSP) as a consequence of soil erosion (SE). Until now, simultaneous monitoring of NPSP and SE is difficult due to the intertwined effects of crop type, topography and management in these areas. In this study, we developed a new integrated method to simultaneously monitor SE and NPSP in an intensive agricultural area (about 6 000 km(2)) of Nanjing in eastern China, based on meteorological data, a geographic information system database and soil and water samples, and identified the main factors contributing to NPSP and SE by calculating the NPSP and SE loads in different sub-areas. The levels of soil total nitrogen (TN), total phosphorus (TP), available nitrogen (AN) and available phosphorus (AP) could be used to assess and predict the extent of NPSP and SE status in the study area. The most SE and NPSP loads occurred between April to August. The most seriously affected area in terms of SE and NPSP was the Jiangning District, implying that the effective management of SE and NPSP in this area should be considered as a priority. The sub-regions with higher vegetation coverage contributed to less SE and NPSP, confirming the conclusions of previous studies, namely that vegetation is an effective factor controlling SE and NPSP. Our quantitative method has both high precision and reliability for the simultaneous monitoring of SE and NPSP occurring in intensive agricultural areas.

分类号: S15

  • 相关文献

[1]Water isotope technology application for sustainable eco-environmental construction: Effects of landscape characteristics on water yield in the alpine headwater catchments of Tibetan Plateau for sustainable eco-environmental construction. Liu, Yuhong,Yu, Junbao,Shao, Hongbo,Liu, Fude,Dorland, Edu,Zhang, Jianping,Liu, Yuhong,Liu, Fude,An, Shuqing,Shao, Hongbo.

[2]Effects of vegetation coverage and management practice on soil nitrogen loss by erosion in a hilly region of the Loess Plateau in China. Zhang, XC,Shao, MA. 2003

[3]Remote sensing monitoring the spatiotemporal changes of alpine grassland coverage in the Northern Tibet - art. no. 62982J. Gao Qingzhu,Li Yue,Wan Yunfan,Lin Erda,Sheng Wenping,Yang Kai. 2006

[4]Spatial variation of attainable yield and fertilizer requirements for maize at the regional scale in China. Xu, Xinpeng,Xu, Xinpeng,He, Ping,Zhang, Jiajia,Zhou, Wei,He, Ping,Pampolino, Mirasol F.,Johnston, Adrian M..

[5]Crop rotational and spatial determinants of variation in Heterodera avenae (cereal cyst nematode) population density at village scale in spring cereals grown at high altitude on the Tibetan Plateau, Qinghai, China. Riley, Ian T.,Hou, Shengying,Chen, Shulong.

[6]Impacts of the north migration of China's rice production on its ecosystem service value during the last three decades (1980-2014). Fang Fu-ping,Peng Shao-bing,Fang Fu-ping,Feng Jin-fei,Li Feng-bo. 2017

[7]TEMPORAL AND SPATIAL VARIATIONS EVALUATION IN WATER QUALITY OF QIANDAO LAKE RESERVOIR, CHINA. Gu, Qing,Hu, Hao,Sheng, Li,Zhang, Xiaobin,An, Juan,Zheng, Kefeng,Ma, Ligang,Li, Jiadan. 2016

[8]Modelling soil water dynamic in rain-fed spring maize field with plastic mulching. Chen, Baoqing,Liu, Enke,Mei, Xurong,Yan, Changrong,Chen, Baoqing,Liu, Enke,Mei, Xurong,Yan, Changrong,Chen, Baoqing,Garre, Sarah. 2018

[9]Spatio-temporal variations in organic carbon density and carbon sequestration potential in the topsoil of Hebei Province, China. Cao Xiang-hui,Long Huai-yu,Lei Qiu-liang,Zhang Ji-zong,Zhang Wen-ju,Wu Shu-xia,Liu Jian. 2016

[10]Geographical Variation of Climate Change Impact on Rice Yield in the Rice-Cropping Areas of Northeast China during 1980-2008. Liu, Zhenhuan,Zhang, Guojie,Yang, Peng. 2016

[11]DEM Based Analysis of Biomass Carbon Stock in Xilingol Grassland. Hasituya,Chen, Zhongxin,Chen, Zhongxin,Hasituya,Bao, Yuhai,Bao, Yuhai. 2014

[12]Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Yu, Gui-Rui,Zhu, Xian-Jin,Fu, Yu-Ling,He, Hong-Lin,Wang, Qiu-Feng,Wen, Xue-Fa,Li, Xuan-Ran,Zhang, Lei-Ming,Zhang, Li,Su, Wen,Li, Sheng-Gong,Sun, Xiao-Min,Wang, Hui-Min,Shi, Pei-Li,Zhao, Feng-Hua,Zhu, Xian-Jin,Li, Xuan-Ran,Wang, Yan-Fen,Zhang, Yi-Ping,Zhang, Jun-Hui,Yan, Jun-Hua,Zhou, Guang-Sheng,Jia, Bing-Rui,Chen, Shi-Ping,Xiang, Wen-Hua,Li, Ying-Nian,Zhao, Liang,Xin, Xiao-Ping,Wang, Yu-Ying,Tong, Cheng-Li. 2013

[13]Winter Wheat Growth Spatial Variation Monitoring Through Hyperspectral Remote Sensing Image. Song Xiaoyu,Gu Xiaohe,Xu Xingang,Li Ting,Wang Jihua. 2015

[14]CARAGANA FABR. PROMOTES REVEGETATION AND SOIL REHABILITATION IN SALINE-ALKALI WASTELAND. Zhang, Lizhen,Fan, JingJing,Meng, Qiuxia,Niu, Yu. 2013

[15]Heavy Metals in Sea Cucumber Juveniles from Coastal Areas of Bohai and Yellow Seas, North China. Jiang, Haifeng,Tang, Shizhan,Qin, Dongli,Chen, Zhongxiang,Wang, Jinlong,Bai, Shuyan,Mou, Zhenbo.

作者其他论文 更多>>