Effects of 1-methylcyclopropene on function of flag leaf and development of superior and inferior spikelets in rice cultivars differing in panicle types

文献类型: 外文期刊

第一作者: Zhang, Junhua

作者: Zhang, Junhua;Lin, Yujiong;Zhu, Lianfeng;Yu, Shengmiao;Jin, Qianyu;Kundu, Sanjoy K.

作者机构:

关键词: Compact panicle;Ethylene;Lax panicle;1-Methylcyclopropene (1-MCP);Rice (Oryza sativa L.);Spikelets development

期刊名称:FIELD CROPS RESEARCH ( 影响因子:5.224; 五年影响因子:6.19 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: High ethylene production usually slackens spikelets development in compact panicled rice (Oryza sativa L) cultivars. 1-Methylcyclopropene (1-MCP) is a potent inhibitor of ethylene action that has been shown to prevent ethylene-induced effects in fruits. However, effects of 1-MCP on spikelets development in rice cultivars differing in panicle types are unclear. This study explored whether 1-MCP is involved in regulating rice flag leaf function, and superior and inferior spikelets development. Four rice cultivars were field grown in 2012 and 2013, including two lax-panicled cultivars, Liangyoupeijiu (LYP9) and Guodao 6 (GD6), and two compact-panicled cultivars, Yongyou 9 (YY9) and Yongyou 12 (YY12). Results showed that 1-MCP played a positive role in regulating photosynthetic rate of rice flag leaf. Application of 1-MCP was more effective on enhancing grain filling rate of LYP9, GD6, and YY9. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) activity and ethylene production of inferior spikelets were more sensitive to the regulation of 1-MCP comparing to that in superior spikelets. Compared to other cultivars, ACS activity and ethylene production in inferior spikelets of LYP9 with 1-MCP treatment were significantly lower than that in control (CK). Effect of 1-MCP on starch content in superior and inferior spikelets varied with rice cultivars, but application of 1-MCP significantly enhanced starch content of inferior spikelets for LYP9. To compare with CK, application of 1-MCP greatly increased grain yield, spikelet fertility, and harvest index for LYP9, GD6, and YY9, especially for LYP9. Results indicate that 1-MCP favorably regulated flag leaf photosynthesis and inferior spikelets development in rice cultivars used in this trial, and LYP9 showed the best performances after application of 1-MCP. (C) 2015 Elsevier B.V. All rights reserved.

分类号: S

  • 相关文献

[1]Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. Hussain, Sajid,Zhang Jun-hua,Zhong Chu,Zhu Lian-feng,Cao Xiao-chuang,Yu Sheng-miao,James, Allen Bohr,Hu Ji-jie,Jin Qian-yu. 2017

[2]Involvement of 1-Methylcyclopropene in Plant Growth, Ethylene Production, and Synthase Activity of Inferior Spikelets in Hybrid Rice Differing in Panicle Architectures. Zhang, Junhua,Zhu, Lianfeng,Yu, Shengmiao,Jin, Qianyu,Zhang, Junhua.

[3]Hydrogen gas prolongs the shelf life of kiwifruit by decreasing ethylene biosynthesis. Hu, Huali,Shen, Wenbiao,Hu, Huali,Zhao, Suping,Li, Pengxia,Hu, Huali. 2018

[4]Transcriptional Regulation of Genes Encoding Key Enzymes of Abscisic Acid Metabolism During Melon (Cucumis melo L.) Fruit Development and Ripening. Sun, Yufei,Chen, Pei,Duan, Chaorui,Wang, Yanping,Ji, Kai,Hu, Yin,Li, Qian,Dai, Shengjie,Wu, Yan,Luo, Hao,Sun, Liang,Leng, Ping,Tao, Pang. 2013

[5]Isolation and characterization of a novel cDNA encoding ERF/AP2-type transcription factor OsAP25 from Oryza sativa L.. Fu, Xiao-Yan,Zhang, Zhen,Peng, Ri-He,Xiong, Ai-Sheng,Liu, Jin-Ge,Wu, Li-Juan,Gao, Feng,Zhu, Hong,Guo, Zhao-Kui,Yao, Quan-Hong. 2007

[6]MPK3/MPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis. Ye, Lingxiao,Li, Lin,Wang, Lu,Wang, Shoudong,Li, Sen,Du, Juan,Zhang, Shuqun,Shou, Huixia,Wang, Lu. 2015

[7]Function of a citrate synthase gene (MaGCS) during postharvest banana fruit ripening. Liu, Ju-Hua,Chi, Guang-Hong,Jia, Cai-Hong,Zhang, Jian-Bin,Xu, Bi-Yu,Jin, Zhi-Qiang,Jin, Zhi-Qiang. 2013

[8]Role of abscisic acid and ethylene in sweet cherry fruit maturation: molecular aspects. Ren, J.,Chen, P.,Dai, S. J.,Li, P.,Li, Q.,Ji, K.,Wang, Y. P.,Leng, P.,Ren, J.. 2011

[9]Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana. Shakeel, Samina N.,Gao, Zhiyong,Amir, Madiha,Chen, Yi-Feng,Rai, Muneeza Iqbal,Ul Haq, Noor,Schaller, G. Eric,Shakeel, Samina N.,Amir, Madiha,Rai, Muneeza Iqbal,Ul Haq, Noor,Chen, Yi-Feng. 2015

[10]Involvement of Pheophytinase in Ethylene-Mediated Chlorophyll Degradation in the Peel of Harvested 'Yali' Pear. Cheng, Yudou,Guan, Junfeng. 2014

[11]Effect of BO-ACO 2 gene on post-harvest senescence in transgenic broccoli (Brassica oleracea L. var. italica). Qin, Feifei,Wang, Chengrong,Wang, Ran,Ma, Gang,Qin, Feifei,Qin, Feifei,Xu, Hui-lian. 2011

[12]Parsing the Regulatory Network between Small RNAs and Target Genesin Ethylene Pathway in Tomato. Wang, Yunxiang,Wang, Qing,Gao, Lipu,Zuo, Jinhua,Wang, Yunxiang,Wang, Qing,Gao, Lipu,Zuo, Jinhua,Wang, Yunxiang,Wang, Qing,Gao, Lipu,Zuo, Jinhua,Wang, Yunxiang,Wang, Qing,Gao, Lipu,Zuo, Jinhua,Zhu, Benzhong,Ju, Zheng,Luo, Yunbo. 2017

[13]The Transcription Factor AtDOF4.7 Is Involved in Ethylene- and IDA-Mediated Organ Abscission in Arabidopsis. Wang, Gao-Qi,Tan, Feng,Zhang, Xiao-Yan,Chen, Qi-Jun,Wang, Xue-Chen,Wei, Peng-Cheng,Yu, Man. 2016

[14]Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering. Li, Yun-He,Wu, Qing-Song,Liu, Sheng-Hui,Zhang, Hong-Na,Zhang, Zhi,Sun, Guang-Ming,Li, Yun-He,Huang, Xia. 2016

[15]Genes involved in ethylene signal transduction in peach (Prunus persica) and their expression profiles during fruit maturation. Wang, Xiaobei,Ding, Yifeng,Wang, Yan,Pan, Lei,Niu, Liang,Lu, Zhenhua,Cui, Guochao,Zeng, Wenfang,Wang, Zhiqiang.

[16]OsERF2 controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism. Xiao, Guiqing,Lu, Xiangyang,Xiao, Guiqing,Qin, Hua,Zhou, Jiahao,Quan, Ruidang,Huang, Rongfeng,Zhang, Haiwen.

[17]A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Guo, Jun-E,Hu, Zongli,Yu, Xiaohui,Li, Anzhou,Li, Fenfen,Wang, Yunshu,Chen, Guoping,Tian, Shibing. 2018

[18]Construction of ethylene regulatory network based on the phytohormones related gene transcriptome profiling and prediction of transcription factor activities in soybean. Cheng, Yunqing,Liu, Jianfeng,Liu, Qiang,Liu, Chunming,Yang, Xiangdong,Ma, Rui.

[19]Effects of 1-MCP on postharvest physiology and quality of bitter melon (Momordica charantia L.). Han, Cong,Zuo, Jinhua,Wang, Qing,Xu, Lijing,Gao, Lipu,Han, Cong,Wang, Zhaosheng,Dong, Haizhou,Han, Cong.

[20]Characterization and Transcript Profiling of PME and PMEI Gene Families during Peach Fruit Maturation. Zhu, Yunqing,Zeng, Wenfang,Wang, Xiaobei,Pan, Lei,Niu, Liang,Lu, Zhenhua,Cui, Guochao,Wang, Zhiqiang.

作者其他论文 更多>>