Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils

文献类型: 外文期刊

第一作者: Ai, Chao

作者: Ai, Chao;Liang, Guoqing;Sun, Jingwen;Wang, Xiubin;He, Ping;Zhou, Wei;He, Xinhua;He, Ping;He, Xinhua;He, Xinhua

作者机构:

关键词: Bacteria;Fertilization;Pyrosequencing;Root-derived carbon;Rhizosphere microbiome;Stable isotope probing;Wheat

期刊名称:SOIL BIOLOGY & BIOCHEMISTRY ( 影响因子:7.609; 五年影响因子:8.312 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Root-derived carbon (C) is considered as critical fuel supporting the interaction between plant and rhizosphere microbiome, but knowledge of how plant microbe association responds to soil fertility changes in the agroecosystem is lacking. We report an integrative methodology in which stable isotope probing (SIP) and high-throughput pyrosequencing are combined to completely characterize the root-feeding bacterial communities in the rhizosphere of wheat grown in historical soils under three long-term (32-year) fertilization regimes. Wheat root-derived C-13 was dominantly assimilated by Actinobacteria and Proteobacteria (notably Burkholderiales), accounting for nearly 70% of root-feeding microbiome. In contrast, rhizosphere bacteria utilizing original soil organic matter (SOM) possessed a higher diversity at phylum level. Some microbes (e.g. Bacteroidetes and Chloroflexi) enhancing in the rhizosphere were not actively recruited through selection by rhizodeposits, indicating a limited range of action of root exudates. Inorganic fertilization decreased the dependence of Actinobacteria on root-derived C, but significantly increased its proportion in SOM-feeding microbiome. Furthermore, significantly lower diversity of the root-feeding microbiome, but not the SOM-feeding microbiome, was observed under both organic and inorganic fertilizations. These results revealed that long-term fertilizations with increasing nutrients availability would decrease the preference of rhizosphere microbiome for root-derived substrates, leading to a simpler crop microbe association. (C) 2014 Elsevier Ltd. All rights reserved.

分类号: S1

  • 相关文献

[1]Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Shi, YingWu,Yang, Hongmei,Zhang, Tao,Sun, Jian,Lou, Kai.

[2]Effects of wheat and soybean stubbles on soil sickness in continuous cropping of cucumber. Feng, T.,Wang, Y. Y.,Zhang, Y. H.,Shi, X. H.,Qin, C. H.,Zhang, S. A.,Jin, S. C.,Zhang, H.,Zhang, J.,Zhang, S. A.,Zhang, J.,Qin, C. H.. 2016

[3]Association of different endosymbionts with the whitefly species Bemisia tabaci and Trialeurodes vaporariorum (Sternorrhyncha : Aleyrodidae). Tan, ZJ,Xie, BY,Xiao, QM,Yang, YH,Wan, FH,Huang, SW.

[4]BIRC7 gene in channel catfish (Ictalurus punctatus): Identification and expression analysis in response to Edwardsiella tarda, Streptococcus iniae and channel catfish Hemorrhage Reovirus. Li, Min,Wang, Qi-Long,Chen, Song-Lin,Sha, Zhen-Xia,Li, Min,Liu, Yang.

[5]Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Wang, Xinli,Zhong, Wenhui,Wang, Xinli,Han, Cheng,Zhang, Jinbo,Deng, Huan,Deng, Yongcui,Zhong, Wenhui,Han, Cheng,Zhang, Jinbo,Deng, Huan,Deng, Yongcui,Zhong, Wenhui,Huang, Qianru.

[6]The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing. Tong, Hui,Li, Fangbai,Chen, Manjia,Hu, Min,Tong, Hui,Luo, Chunling,Tong, Hui,Liu, Chengshuai.

[7]Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by C-13-DNA-SIP. Fan, Fenliang,Yin, Chang,Li, Zhaojun,Song, Alin,Liang, Yongchao,Tang, Yongjun,Zou, Jun,Wakelin, Steven A..

[8]Impact of brassicaceous seed meals on the composition of the soil fungal community and the incidence of Fusarium wilt on chili pepper. Ma, Yan,Gentry, Terry,Hu, Ping,Pierson, Elizabeth,Gu, Mengmeng,Yin, Shixue.

[9]Effect of fumigation with 1,3-dichloropropene on soil bacterial communities. Liu, Xiumei,Cheng, Xingkai,Wang, Kaiyun,Qiao, Kang,Wang, Hongyan.

[10]Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. Lu, Lu,Wu, Yucheng,Wang, Baozhan,Lin, Xiangui,Zhu, Jianguo,Jia, Zhongjun,Lu, Lu,Han, Wenyan,Zhang, Jinbo,Cai, Zucong.

[11]Transcriptome analysis of the grass carp (Ctenopharyngodon idella) using 454 pyrosequencing methodology for gene and marker discovery. Bai, J. J.. 2015

[12]Duration-Related Variations in Archaeal Communities after a Change from Upland Fields to Paddy Fields. Jiang, Nan,Wei, Kai,Chen, Lijun,Chen, Rui.

[13]Diversity and space-time dynamics of endophytic archaea from sugar beet in the north slope of Tianshan Mountain revealed by 454 pyrosequencing and T-RFLP. Shi, YingWu,TaPa, MuSi,Li, Chun,Yang, HongMei,Zhang, Tao,Gao, Yan,Sun, Jian,Zeng, Jun,Lin, Qing,Cao, ZhenHua,OuTi, KuEr,Li, YuGuo,Lou, Kai,Shi, YingWu,TaPa, MuSi,Li, Chun,Yang, HongMei,Zhang, Tao,Gao, Yan,Sun, Jian,Zeng, Jun,Lin, Qing,Cao, ZhenHua,OuTi, KuEr,Li, YuGuo,Lou, Kai.

[14]Endophytic fungal diversity and space-time dynamics in sugar beet. Shi, YingWu,Li, Chun,Yang, HongMei,Zhang, Tao,Gao, Yan,Zeng, Jun,Lin, Qing,Mahemuti, Outikuer,Li, Yuguo,Huo, Xiangdong,Lou, Kai,Shi, YingWu,Li, Chun,Yang, HongMei,Zhang, Tao,Gao, Yan,Zeng, Jun,Lin, Qing,Mahemuti, Outikuer,Li, Yuguo,Huo, Xiangdong,Lou, Kai.

[15]Do the intestinal microbiotas differ between paddlefish (Polyodon spathala) and bighead carp (Aristichthys nobilis) reared in the same pond?. Li, X. M.,Zhu, Y. J.,Yang, D. G.,Yan, Q. Y.,Ringo, E..

[16]Different Continuous Cropping Spans Significantly Affect Microbial Community Membership and Structure in a Vanilla-Grown Soil as Revealed by Deep Pyrosequencing. Xiong, Wu,Zhao, Jun,Xun, Weibing,Li, Rong,Zhang, Ruifu,Shen, Qirong,Xiong, Wu,Zhao, Qingyun,Wu, Huasong.

[17]Responses of N2O reductase gene (&ITnosZ&IT)-denitrifier communities to long-term fertilization follow a depth pattern in calcareous purplish paddy soil. Lu Sheng-e,Xiang Quan-ju,Yu Xiu-mei,Zhao Ke,Zhang Xiao-ping,Gu Yun-fu,Tu Shi-hua. 2017

[18]Large numbers of new bacterial taxa found by Yunnan Institute of Microbiology. Jiang Yi,Cao YanRu,Zhao LiXing,Tang ShuKun,Li WenJun,Xu Ping,Xu LiHua,Cao YanRu,Wang Yun,Lou Kai,Mao PeiHong. 2011

[19]Effect of long-term fertilization strategies on bacterial community composition in a 35-year field experiment of Chinese Mollisols. Ma, Mingchao,Zhou, Jing,Guan, Dawei,Jiang, Xin,Li, Jun,Ma, Mingchao,Ongena, Marc,Liu, Wenzheng,Zhou, Jing,Zhao, Baisuo,Guan, Dawei,Jiang, Xin,Li, Jun,Wei, Dan. 2018

[20]Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Zhang, Shuiqing,Guo, Doudou,Huang, Shaomin,Ai, Chao,Zhang, Xin,Zhou, Wei. 2018

作者其他论文 更多>>