Engineering Tobacco to Remove Mercury from Polluted Soil

文献类型: 外文期刊

第一作者: Chang, S.

作者: Chang, S.;Wang, A.;Jin, Z.;Li, J.;He, Y.;Shu, H.;Chang, S.;Wang, A.;Jin, Z.;Li, J.;He, Y.;Shu, H.;Wei, F.;Yang, Y.;Shu, H.

作者机构:

关键词: Phytoremediation;Mercury;Vacuole;Cytoplasm;Chelatin

期刊名称:APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY ( 影响因子:2.926; 五年影响因子:2.685 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Tobacco is an ideal plant for modification to remove mercury from soil. Although several transgenic tobacco strains have been developed, they either release elemental mercury directly into the air or are only capable of accumulating small quantities of mercury. In this study, we constructed two transgenic tobacco lines: Ntk-7 (a tobacco plant transformed with merT-merP-merB1-merB2-ppk) and Ntp-36 (tobacco transformed with merT-merP-merB1-merB2-pcs1). The genes merT, merP, merB1, and merB2 were obtained from the well-known mercury-resistant bacterium Pseudomonas K-62. Ppk is a gene that encodes polyphosphate kinase, a key enzyme for synthesizing polyphosphate in Enterobacter aerogenes. Pcs1 is a tobacco gene that encodes phytochelatin synthase, which is the key enzyme for phytochelatin synthesis. The genes were linked with LP4/2A, a sequence that encodes a well-known linker peptide. The results demonstrate that all foreign genes can be abundantly expressed. The mercury resistance of Ntk-7 and Ntp-36 was much higher than that of the wild type whether tested with organic mercury or with mercuric ions. The transformed plants can accumulate significantly more mercury than the wild type, and Ntp-36 can accumulate more mercury from soil than Ntk-7. In mercury-polluted soil, the mercury content in Ntp-36's root can reach up to 251 mu g/g. This is the first report to indicate that engineered tobacco can not only accumulate mercury from soil but also retain this mercury within the plant. Ntp-36 has good prospects for application in bioremediation for mercury pollution.

分类号: Q5

  • 相关文献

[1]Cytoplasm and cytoplasm-nucleus interactions affect agronomic traits in japonica rice. Tao, DY,Hu, FY,Yang, JY,Yang, GF,Yang, YQ,Xu, P,Li, J,Ye, CR,Dai, LY. 2004

[2]Genealogical analysis of IRAT upland rice varieties. Hu, FY,Tao, DY,Yang, GF,Yang, JY. 1997

[3]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[4]ADP-glucose pyrophosphorylase is localized to both the cytoplasm and plastids in developing pericarp of tomato fruit. Chen, BY,Wang, Y,Janes, HW.

[5]SequencevariationinROP13geneamongToxoplasmagondiiisolatesfromdifferentgeographicallocationsandhosts. WangPeiyuan,ZhouYang,LiJuan,SongHuiqun,ZhouDonghui,XuMinjun,ZhuXingquan. 2011

[6]Interactions of Oryza sativa OsCONTINUOUS VASCULAR RING-LIKE 1 (OsCOLE1) and OsCOLE1-INTERACTING PROTEIN reveal a novel intracellular auxin transport mechanism. Liu, Fei,Zhang, Lan,Luo, Yanzhong,Xu, Miaoyun,Fan, Yunliu,Wang, Lei.

[7]Cloning and expression analysis of a vacuolar Na+/H+ antiporter gene from Alfalfa. Yang, QC,Wu, MS,Wang, PQ,Kang, JM,Zhou, XL.

[8]Gene Expression Profiling Related to Hyphal Growth in a Temperature-Sensitive Mutant of Magnaporthe oryzae. Li Xue-song,Wang Hong-kai,Lin Fu-cheng,Xu Fei. 2013

[9]Tissue-specific expression and drought responsiveness of cell-wall invertase genes of rice at flowering. Ji, XM,Raveendran, M,Oane, R,Ismail, A,Lafitte, R,Bruskiewich, R,Cheng, SH,Bennett, J.

[10]Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis. Zhang, Haiwen,Zhao, Fu-Geng,Wang, Yuan,Zhang, Haiwen,Yu, Yuexuan,Song, Jiali,Li, Legong,Zhang, Haiwen,Tang, Ren-Jie,Luan, Sheng,Zhang, Haiwen.

[11]DISTRIBUTION CHARACTERISTICS, BIOACCUMULATION, AND SOURCES OF MERCURY IN RICE AT NANSI LAKE AREA, SHANDONG PROVINCE, CHNIA. Liu, H.,Zhang, J.,Dai, J. L.,Wang, L. H.,Zhang, J.,Li, G. X.. 2015

[12]Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide. Meng, De Kun,Yang, Zhi Min,Chen, Jian. 2011

[13]Mercury contamination of fungi genus Xerocomus in the Yunnan province in China and the region of Europe. Kojta, Anna K.,Saba, Martyna,Falandysz, Jerzy,Zhang, Ji,Wang, Yuanzhong,Li, Tao. 2015

[14]Mercury Fluxes And Pools In Three Subtropical Forested Catchments, Southwest China. Wang, Zhangwei,Zhang, Xiaoshan,Zhijia, Ci,Xiao, Jingsong,Yu, Pingzhong.

[15]Effect of organic matter and pH on mercury release from soils. Yang, Yong-Kui,Zhang, Cheng,Shi, Xiao-Jun,Lin, Tao,Wang, Ding-Yong. 2007

[16]Estimation of mercury emission from different sources to atmosphere in Chongqing, China. Wang, Dingyong,He, Lei,Wei, Shiqiang,Feng, Xinbin. 2006

[17]Characteristics of dissolved organic matter (DOM) and relationship with dissolved mercury in Xiaoqing River-Laizhou Bay estuary, Bohai Sea, China. Jiang, Tao,Wang, Dingyong,Gao, Jie,Li, Chuxian,Jiang, Tao,Skyllberg, Ulf,Tang, Jianhui,Bjorn, Erik,Green, Nelson W..

[18]A reusable and sensitive biosensor for total mercury in canned fish based on fluorescence polarization. Shen, Tongfei,Yue, Qiaoli,Jiang, Xiuxiu,Wang, Lei,Xu, Shuling,Li, Haibo,Liu, Jifeng,Gu, Xiaohong,Zhang, Shuqiu.

[19]The effect of different TiO2 nanoparticles on the release and transformation of mercury in sediment. Zhang, Jinyang,Zhang, Jinyang,Li, Chuxian,Wang, Dingyong,Zhang, Cheng,Liang, Li,Zhou, Xiong,Wang, Dingyong,Zhang, Cheng.

[20]Mercury speciation by differential photochemical vapor generation at UV-B vs. UV-C wavelength. Chen, Guoying,Lai, Bunhong,Mei, Ni,Liu, Jixin,Mao, Xuefei. 2017

作者其他论文 更多>>