Effect of Microwave Treatment on the Efficacy of Expeller Pressing of Brassica napus Rapeseed and Brassica juncea Mustard Seeds

文献类型: 外文期刊

第一作者: Niu, Yanxing

作者: Niu, Yanxing;Wan, Chuyun;Guo, Mian;Huang, Fenghong;Niu, Yanxing;Rogiewicz, Anna;Slominski, Bogdan A.

作者机构:

关键词: microwave heating;expeller pressing;rapeseed;mustard;chemical composition

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A study was conducted to evaluate the effect of microwave heating on the efficacy of expeller pressing of rapeseed and mustard seed and the composition of expeller meals in two types of Brassica napus rapeseed (intermediate- and low-glucosinolate) and in Brassica juncea mustard (high-glucosinolate). Following microwave treatment, the microstructure of rapeseed using transmission electron microscopy showed a significant disappearance of oil bodies and myrosin cells. After 6 min of microwave heating (400 g, 800 W), the oil content of rapeseed expeller meal decreased from 44.9 to 13.5% for intermediate-glucosinolate B. napus rapeseed, from 42.6 to 11.3% for low-glucosinolate B. napus rapeseed, and from 44.4 to 14.1% for B. juncea mustard. The latter values were much lower than the oil contents of the corresponding expeller meals derived from the unheated seeds (i.e., 26.6, 22.6, and 29.8%, respectively). Neutral detergent fiber (NDF) contents showed no differences except for the expeller meal from the intermediate-glucosinolate B. napus rapeseed, which increased from 22.7 to 29.2% after 6 min of microwave heating. Microwave treatment for 4 and 5 min effectively inactivated myrosinase enzyme of intermediate-glucosinolate B. napus rapeseed and B. juncea mustard seed, respectively. In low-glucosinolate B. napus rapeseed the enzyme appeared to be more heat stable, with some activity being present after 6 min of microwave heating. Myrosinase enzyme inactivation had a profound effect on the glucosinolate content of expeller meals and prevented their hydrolysis to toxic breakdown products during the expelling process. It appeared evident from this study that microwave heating for 6 min was an effective method of producing expeller meal without toxic glucosinolate breakdown products while at the same time facilitating high yield of oil during the expelling process.

分类号: R15`S

  • 相关文献

[1]Valuable New Resistances Ensure Improved Management of Sclerotinia Stem Rot (Sclerotinia sclerotiorum) in Horticultural and Oilseed Brassica Species. You, Ming Pei,Uloth, Margaret B.,Barbetti, Martin J.,You, Ming Pei,Uloth, Margaret B.,Barbetti, Martin J.,You, Ming Pei,Barbetti, Martin J.,Li, Xi Xiang,Banga, Surinder S.,Banga, Shashi K..

[2]New host resistances to Pseudocercosporella capsellae and implications for white leaf spot management in Brassicaceae crops. Gunasinghe, Niroshini,You, Ming Pei,Barbetti, Martin J.,Barbetti, Martin J.,Li, Xi Xiang,Banga, Surinder S.,Banga, Shashi K..

[3]New host resistances in Brassica napus and Brassica juncea from Australia, China and India: Key to managing Sclerotinia stem rot (Sclerotinia sclerotiorum) without fungicides. Barbetti, M. J.,Li, C. X.,You, M. P.,Barbetti, M. J.,You, M. P.,Banga, S. S.,Banga, S. K.,Sandhu, P. S.,Singh, D.,Singh, R.,Liu, S. Y..

[4]PHOTOSYNTHESIS AND ANTIOXIDANT RESPONSE TO WINTER RAPESEED (BRASSICA NAPUS L.) AS AFFECTED BY BORON. Hossain, Md Faruque,Pan Shenggang,Duan Meiyang,Mo Zhaowen,Karbo, Maurice Baimba,Tang Xiangru,Hossain, Md Faruque,Pan Shenggang,Duan Meiyang,Mo Zhaowen,Karbo, Maurice Baimba,Tang Xiangru,Hossain, Md Faruque,Bano, Asghari. 2015

[5]Multigenic Control of Pod Shattering Resistance in Chinese Rapeseed Germplasm Revealed by Genome-Wide Association and Linkage Analyses. Liu, Jia,Wang, Jun,Wang, Hui,Wang, Wenxiang,Zhou, Rijin,Mei, Desheng,Cheng, Hongtao,Yang, Juan,Hu, Qiong,Wang, Jun,Raman, Harsh. 2016

[6]Inheritance and molecular characterization of resistance to AHAS-inhibiting herbicides in rapeseed. Hu Mao-long,Pu Hui-ming,Gao Jian-qin,Long Wei-hua,Chen Feng,Zhou Xiao-ying,Zhang Wei,Peng Qi,Chen Song,Zhang Jie-fu. 2017

[7]Temporal Polarimetric Behavior of Oilseed Rape (Brassica napus L.) at C-Band for Early Season Sowing Date Monitoring. Yang, Hao,Li, Zengyuan,Chen, Erxue,Feng, Qi,Yang, Hao,Zhao, Chunjiang,Yang, Guijun,Casa, Raffaele,Pignatti, Stefano. 2014

[8]Cytoplasmic male sterility with self-incompatibility, a novel approach to utilizing heterosis in rapeseed (Brassica napus L.). Wang, Han-zhong,Shen, Jin-xiong,Fu, Ting-dong,Tian, Bao-ming.

[9]Influence of Microwaves Treatment of Rapeseed on Phenolic Compounds and Canolol Content. Yang, Mei,Zheng, Chang,Zhou, Qi,Liu, Changsheng,Li, Wenlin,Huang, Fenghong,Yang, Mei,Zheng, Chang,Zhou, Qi,Liu, Changsheng,Li, Wenlin.

[10]Comparison of Five Endogenous Reference Genes for Specific PCR Detection and Quantification of Brassica napus. Wu, Gang,Zhang, Li,Wu, Yuhua,Cao, Yinglong,Lu, Changming.

[11]The effect of waterlogging on yield and seed quality at the early flowering stage in Brassica napus L.. Xu, Mingyue,Ma, Haiqing,Zeng, Liu,Cheng, Yong,Lu, Guangyuan,Xu, Jinsong,Zhang, Xuekun,Zou, Xiling,Ma, Haiqing.

[12]Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. Yang, Hongli,Liu, Jing,Lin, Jiulu,Deng, Linbin,Fan, Shihang,Sun, Fengming,Hua, Wei,Guo, Yan.

[13]A large replum-valve joint area is associated with increased resistance to pod shattering in rapeseed. Hu, Zhiyong,Yang, Hongli,Zhang, Liang,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong,Hua, Wei.

[14]A Simple Method for Isolating Chloroplast DNA and Mitochondria DNA from the Same Rapeseed Green Leaf Tissue. Hu Zhi-yong,Zhan Gao-miao,Wang Han-zhong,Hua Wei. 2012

[15]Effect of Microwave Treatment on Sinapic Acid Derivatives in Rapeseed and Rapeseed Meal. Niu, Yanxing,Jiang, Mulan,Wan, Chuyun,Yang, Mei,Hu, Shuangxi,Niu, Yanxing,Jiang, Mulan,Wan, Chuyun,Yang, Mei,Hu, Shuangxi. 2013

[16]Association Mapping of Flowering Time QTLs and Insight into Their Contributions to Rapeseed Growth Habits. Wang, Nian,Chen, Biyun,Xu, Kun,Gao, Guizhen,Li, Feng,Qiao, Jiangwei,Yan, Guixin,Li, Jun,Li, Hao,Wu, Xiaoming,Wang, Nian. 2016

[17]Effect of Pretreatment with Dehulling and Microwaving on the Flavor Characteristics of Cold-Pressed Rapeseed Oil by GC-MS-PCA and Electronic Nose Discrimination. Zhou, Qi,Yang, Mei,Huang, Fenghong,Zheng, Chang,Deng, Qianchun,Zhou, Qi,Yang, Mei,Huang, Fenghong,Zheng, Chang,Deng, Qianchun. 2013

[18]Determination of Quality Parameters of Rapeseeds by Infrared Photoacoustic Spectroscopy. Lu Yu-Zhen,Du Chang-Wen,Zhou Jian-Min,Yu Chang-Bin. 2014

[19]Discrimination of rapeseeds (Brassica napus L.) based on the content of erucic acid by H-1 NMR. Han, Jiao,Li, Yinping,Lu, Changming,Deng, Zhiwei,Geng, Zhufeng,Fu, Boqiang.

[20]Fast and nondestructive determination of protein content in rapeseeds (Brassica napus L.) using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). Lu, Yuzhen,Du, Changwen,Zhou, Jianmin,Yu, Changbing.

作者其他论文 更多>>