Proteomics approach reveals mechanism underlying susceptibility of loquat fruit to sunburn during color changing period

文献类型: 外文期刊

第一作者: Jiang, Ji-Mou

作者: Jiang, Ji-Mou;Deng, Chao-Jun;Xu, Qi-Zhi;Zheng, Shao-Quan;Deng, Chao-Jun;Xu, Qi-Zhi;Zheng, Shao-Quan;Lin, Yong-Xiang;Chen, Yi-Yong;Gong, Hui-Wen;Chen, Wei;Chen, Wei

作者机构:

关键词: Loquat fruit;Heat stress;Proteome;Sunburn;MALDI-TOF-TOF/MS

期刊名称:FOOD CHEMISTRY ( 影响因子:7.514; 五年影响因子:7.516 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The objective of this work was to investigate why loquat fruit peels are more sensitive to high temperature and strong sunlight, making them highly susceptible to sunburn, during the color changing period (CCP). Two dimensional gel electrophoresis (2-DE) of the fruit peel proteins was performed over three developmental periods, namely green fruit period (GFP), color changing period and yellow ripening period (YRP). Fifty-five protein spots with at least 2-fold differences in abundance were successfully identified by MALDI-TOF-TOF/MS. The identified proteins were divided into categories related to heat-shock response, stress response and defense, energy metabolism, photosynthesis and protein biosynthesis. The results showed that expression of proteins related to anaerobic respiration and photorespiration were increased while the proteins related to ROS scavenging, polyamine biosynthesis, defense pathogens and photosynthesis were decreased during CCP under heat stress. Our findings provide new insights into the molecular mechanism of loquat fruit susceptible to sunburn during CCP. (C) 2014 Elsevier Ltd. All rights reserved.

分类号: TS2`TS201.2

  • 相关文献

[1]Comparative Analysts of Flower Proteomes of Two Apple Genotypes Selected by their Different Resistance to Alternaria alternate. Zhang, Cai-xia,Zhang, Li-yi,Tian, Yi,Cong, Pei-hua,Zhang, Cai-xia,Zhang, Li-yi,Tian, Yi,Cong, Pei-hua.

[2]Comparative proteomic analysis of apple branches susceptible and resistant to ring rot disease. Zhang Cai-xia,Tian Yi,Zhang Li-yi,Zong Ze-ran,Cong Pei-hua,Zhang Cai-xia,Tian Yi,Zhang Li-yi,Zong Ze-ran,Cong Pei-hua.

[3]Antioxidant enzymes and fatty acid composition as related to disease resistance in postharvest loquat fruit. Cao, Shifeng,Cao, Shifeng,Cai, Yuting,Zheng, Yonghua,Yang, Zhenfeng.

[4]Sugar metabolism in relation to chilling tolerance of loquat fruit. Yang, Zhenfeng,Cao, Shifeng,Zheng, Yonghua.

[5]Fatty acid composition and antioxidant system in relation to susceptibility of loquat fruit to chilling injury. Cao, Shifeng,Cai, Yuting,Zheng, Yonghua,Cao, Shifeng,Yang, Zhenfeng.

[6]MeJA induces chilling tolerance in loquat fruit by regulating proline and gamma-aminobutyric acid contents. Cao, Shifeng,Cai, Yuting,Zheng, Yonghua,Cao, Shifeng,Yang, Zhenfeng. 2012

[7]Effect of ethanol treatment on disease resistance against anthracnose rot in postharvest loquat fruit. Wang, Kaituo,Cao, Shifeng,Di, Yaqiong,Zheng, Yonghua,Wang, Kaituo,Liao, Yunxia,Cao, Shifeng.

[8]Effects of Short-Term N-2 Treatment on Quality of Loquat Fruit during Cold Storage. Gao, H. Y.,Chen, H. J.,Song, L. L.,Mao, J. L.,Jiang, Y. M.,Zheng, Y. H.. 2010

[9]NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana. Li, Xin,Ahammed, Golam Jalal,Li, Xin,Yu, Jingquan,Shi, Kai. 2015

[10]Comparative proteomic analysis reveals the mechanisms governing cotton fiber differentiation and initiation. Kang Liu,Meiling Han,Chaojun Zhang,Liangyu Yao,Jing Sun,Tianzhen Zhang.

[11]iTRAQ-Based Comparative Proteomic Analysis of Seedling Leaves of Two Upland Cotton Genotypes Differing in Salt Tolerance. Wenfang Gong,Feifei Xu,Du, Xiongming,Junling Sun,Zhen Peng,Shoupu He,Zhaoe Pan,Xiongming Du. 2017

[12]iTRAQ-facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.). Ji Liu,Chaoyou Pang,Hengling Wei,Meizhen Song,Yanyan Meng,Jianhui Ma,Shuli Fan,Shuxun Yu.

[13]Proteomic analysis of mycelial proteins from Magnaporthe oryzae under nitrogen starvation. Zhou, X. -G.,Zhao, Z. -W.,Zhou, X. -G.,Yu, P.,Dong, C.,Yao, C. -X.,Ding, Y. -M.,Tao, N.,Zhou, X. -G.,Yu, P.,Dong, C.,Yao, C. -X.,Ding, Y. -M.,Tao, N.. 2016

[14]Comparative transcriptome and proteome profiling of two Citrus sinensis cultivars during fruit development and ripening. Liu, Jian-jun,Chen, Ke-ling,Li, Hong-wen,He, Jian,Guan, Bin,He, Li,Wang, Jian-hui,Liu, Jian-jun,Chen, Ke-ling,Li, Hong-wen,He, Jian,Guan, Bin,He, Li,Wang, Jian-hui,Liu, Jian-jun,Chen, Ke-ling,Li, Hong-wen,He, Jian,Guan, Bin,He, Li. 2017

[15]Transcriptomic and proteomic analysis of Locusta migratoria eggs at different embryonic stages: Comparison for diapause and non-diapause regimes. Hao Kun,Wang Jie,Tu Xiong-bing,Zhang Ze-hua,Whitman, Douglas W.. 2017

[16]Proteomics Dissection of Cold Responsive Proteins Based on PEG Fractionation in Arabidopsis. Wang Shang,Xi Jinghui,Li Shanyu,Liu Xiangguo,Hao Dongyun. 2014

[17]Relationship between proteome changes of Longissimus muscle and intramuscular fat content in finishing pigs fed conjugated linoleic acid. Zhong, Weijing,Jiang, Zongyong,Zheng, Chuntian,Lin, Yingcai,Zhong, Weijing,Yang, Lin,Zou, Shutong. 2011

[18]Proteomic analysis of responsive root proteins of Fusarium oxysporum-infected watermelon seedlings. Zhang, Man,Xu, Jinhua,Liu, Guang,Yao, Xiefeng,Ren, Runsheng,Yang, Xingping. 2018

[19]Modulation of protein expression in alfalfa (&ITMedicago sativa&IT L.) root and leaf tissues by &ITFusarium proliferatum&IT. Cong Li-li,Long Rui-cai,Kang Jun-mei,Zhang Tie-jun,Wang Zhen,Yang Qing-chuan,Sun Yan,Li Ming-na,Cong Li-li. 2017

[20]Comparative Analyses of Proteome Complement Between Worker Bee Larvae of High Royal Jelly Producing Bees (A. m. ligustica) and Carniolian Bees (A. m. carnica). Chen Jian,Li Jian-ke. 2009

作者其他论文 更多>>