Cytometric analysis, genetic manipulation and antibiotic selection of the snail embryonic cell line Bge from Biomphalaria glabrata, the intermediate host of Schistosoma mansoni

文献类型: 外文期刊

第一作者: Rinaldi, Gabriel

作者: Rinaldi, Gabriel;Yan, Hongbin;Nacif-Pimenta, Rafael;Matchimakul, Pitchaya;Mann, Victoria H.;Brindley, Paul J.;Knight, Matty;Yan, Hongbin;Nacif-Pimenta, Rafael;Matchimakul, Pitchaya;Matchimakul, Pitchaya;Bridger, Joanna;Smout, Michael J.

作者机构:

关键词: Biomphalaria glabrata;Molluscan embryonic cell line (Bge);xCELLigence real time cellular analysis (RTCA);Cytometrics;Genetic transformation;Antibiotic selection

期刊名称:INTERNATIONAL JOURNAL FOR PARASITOLOGY ( 影响因子:3.981; 五年影响因子:4.214 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The invertebrate cell line, Bge, from embryos of the snail Biomphalaria glabrata, remains to date the only established cell line from any species of the Phylum Mollusca. Since its establishment in 1976 by Eder Hansen, few studies have focused on profiling its cytometrics, growth characteristics or sensitivity to xenobiotics. Bge cells are reputed to be challenging to propagate and maintain. Therefore, even though this cell line is a noteworthy resource, it has not been studied widely. With growing interest in functional genomics, including genetic transformation, to elucidate molecular aspects of the snail intermediate hosts responsible for transmission of schistosomiasis, and aiming to enhance the convenience of maintenance of this molluscan cell line, we deployed the xCELLigene real time approach to study Bge cells. Doubling times for three isolates of Bge, termed CB, SL and UK, were longer than for mammalian cell lines - longer than 40 h in complete Bge medium supplemented with 7% fetal bovine serum at 25 C-degrees, ranging from similar to 42 h to similar to 157 h when 40,000 cells were seeded. To assess the potential of the cells for genetic transformation, antibiotic selection was explored. Bge cells were sensitive to the aminonucleoside antibiotic puromycin (from Streptomyces alboniger) from 5 mu g/ml to 200 ng/ml, displaying a half maximal inhibitory concentration (IC50) of similar to 1.91 mu g/ml. Sensitivity to puromycin, and a relatively quick kill time (<48 h in 5 mu g/ml) facilitated use of this antibiotic, together with the cognate resistance gene (puromycin N-acetyl-transferase) for selection of Bge cells transformed with the PAC gene (puroR). Bge cells transfected with a plasmid encoding puroR were partially rescued when cultured in the presence of 5 mu g/ml of puromycin. These findings pave the way for the development of functional genomic tools applied to the host-parasite interaction during schistosomiasis and neglected tropical trematodiases at large. (C) 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

分类号: Q958.9

  • 相关文献

[1]Production of transgenic apricot plants from hypocotyl segments of mature seeds. Petri, Cesar,Wang, Hong,Burgos, Lorenzo,Alburquerque, Nuria,Sanchez-Navarro, Jesus.

[2]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[3]Genetically Transformed Strawberry (Fragaria x ananassa Duch.) with Cold-Inducible Transcription Factor CBF1. Jin, W. M.,Dong, J.,Liu, Y.,Zhang, Y. P.,Pan, Q. H.. 2009

[4]Improved Resistance to Cucumber mosaic virus in Petunia Transformed with Non-Cytotoxic Pokeweed Antiviral Protein Gene. Li, Yu,Chen, Dinghu,Wang, Xifeng,Feng, Hui,Chen, Dinghu. 2013

[5]Research Progress on Tissue Culture and Genetic Transformation of Kenaf (Hibiscus cannabinus). An, Xia,Jin, Guanrong,Ma, GuangYing,Jin, Liang,Luo, Xiahong,Chen, Changli,Shi, Xiaohua,Li, Wenlue,Zhu, Guanlin,Zhang, Jingyu,Dai, Lunjin,Zhou, Jun,Wei, Wei,Chen, Cong,Deng, Gang. 2017

[6]Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco. Wang, Yun-Peng,Wei, Zheng-Yi,Zhong, Xiao-Fang,Lin, Chun-Jing,Zhang, Yu-Ying,Liu, Yan-Zhi,Xing, Shao-Chen,Cai, Yu-Hong,Ma, Jian,Zhang, Yu-Ying. 2016

[7]Expression of the B Subunit of Escherichia coli Heat-Labile Enterotoxin in Transformed Bombyx mori BmN Cells. Zhou, Wen-Lin,Cao, Jin-Ru,Ye, Ai-Hong,Weng, Hong-Biao,He, Li-Hua,Wang, Yong-Qiang,Gong, Cheng-Liang,Xue, Ren-Yu,Cao, Guang-Li,Gong, Cheng-Liang,Xue, Ren-Yu,Cao, Guang-Li. 2012

[8]Transformation of a Novel Drought-Response Transcription Factor Gene PeDREB2b into White Clover via Soaking Seeds with Agrobacterium tumefaciens. Lei, J. -l.,Wang, D.,Cao, H.,Xie, L. -s.,Wu, Y. -m.,Liu, S.,Huang, D. -g.. 2012

[9]In planta soybean transformation technologies developed in China: Procedure, confirmation and field performance. Hu, CY,Wang, LZ. 1999

[10]PEG-Mediated Genetic Transformation of Fusarium oxysporum f. sp conglutinans to Study Pathogenesis in Cabbage. Zhang, Wei,Feng, Jianhai,Yan, Hong,Li, Xinghong,Yan, Jiye,Zhao, Wensheng,Huang, Jinguang,Feng, Jianhai,Yang, Laying. 2014

[11]Development of glyphosate-tolerant transgenic cotton plants harboring the G2-aroA gene. Zhang Xiao-bing,Tang Qiao-ling,Wang Xu-jing,Wang Zhi-xing,Zhang Xiao-bing. 2017

[12]Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize. Du, Hewei,Shen, Xiaomeng,Zhang, Zuxin,Du, Hewei,Huang, Min,Du, Hewei,Zhang, Zuxin,Huang, Yiqin. 2016

[13]Generation of Transgenic Maize by Two Germinating Seed Transformation Methods. Liang, Xue-lian,Liang, Xue-lian,Du, Jian-zhong,Hao, Yao-shan,Cui, Gui-mei,Wang, Yi-xue,Wang, Xiao-qing,Zhang, Huan-huan,Sun, Yi,Sun, Dan-qiong. 2016

[14]Genetic transformation of tobacco with the trehalose synthase gene from Grifola frondosa Fr. enhances the resistance to drought and salt in tobacco. Zhang, SZ,Yang, BP,Feng, CL,Tang, HL. 2005

[15]Establishment of a genetic transformation system for maize inbred P9-10. Zhou, FY,Wang, GY,Xie, YJ,Cui, HZ,Guo, SD,Dai, JR.

[16]Integration and Characterization of T-DNA Insertion in Upland Cotton. Xiaojie YANG,Fuguang LI,Xueyan ZHANG,Kun LIU,Qianhua WANG,Chaojun ZHANG,Chuanliang LIU,Wei ZHU,Guofang SHAN,Chee-Kok CHIN,Weiping FANG. 2013

[17]Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.). Wang Shun-li,Ku, Seong Sub,Choi, Pil Son,Ye Xing-guo,He Cong-fen,Kwon, Suk Yoon. 2015

[18]Agrobacterium-mediated transformation of the apple rootstock Malus micromalus Makino with the ROLC gene. Zhang, Zhen,Sun, Aijun,Cong, Yu,Sheng, Bingcheng,Yao, Quanhong,Cheng, Zong-Ming. 2006

[19]Genetic transformation of wheat: current status and future prospects. Li, Jiarui,Ye, Xingguo,Du, Lipu,Xu, Huijun,Li, Jiarui,An, Baoyan. 2012

[20]Efficient auto-excision of a selectable marker gene from transgenic citrus by combining the Cre/loxP system and ipt selection. Zou, Xiuping,Peng, Aihong,Xu, Lanzhen,Liu, Xiaofeng,Lei, Tiangang,Yao, Lixiao,He, Yongrui,Chen, Shanchun,Zou, Xiuping,Peng, Aihong,Xu, Lanzhen,Liu, Xiaofeng,Lei, Tiangang,Yao, Lixiao,He, Yongrui,Chen, Shanchun. 2013

作者其他论文 更多>>