Estimating winter wheat (Triticum aestivum) LAI and leaf chlorophyll content from canopy reflectance data by integrating agronomic prior knowledge with the PROSAIL model
文献类型: 外文期刊
第一作者: Li, Zhenhai
作者: Li, Zhenhai;Wang, Jihua;Li, Zhenhai;Jin, Xiuliang;Yang, Guijun;Nie, Chenwei;Xu, Xingang;Feng, Haikuan;Li, Zhenhai;Jin, Xiuliang;Yang, Guijun;Nie, Chenwei;Xu, Xingang;Feng, Haikuan
作者机构:
期刊名称:INTERNATIONAL JOURNAL OF REMOTE SENSING ( 影响因子:3.151; 五年影响因子:3.266 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Leaf area index (LAI) and leaf chlorophyll content (LCC) are major considerations in management decisions, agricultural planning, and policy-making. When a radiative transfer model (RTM) was used to retrieve these biophysical variables from remote-sensing data, the ill-posed problem was unavoidable. In this study, we focused on the use of agronomic prior knowledge (APK), constructing the relationship between LAI and LCC, to restrict and mitigate the ill-posed inversion results. For this purpose, the inversion results obtained using the SAILH+PROSPECT (PROSAIL) canopy reflectance model alone (no agronomic prior knowledge, NAPK) and those linked with APK were compared. The results showed that LAI inversion had high accuracy. The validation results of the root mean square error (RMSE) between measured and estimated LAI were 0.74 and 0.69 for NAPK and APK, respectively. Compared with NAPK, APK improved LCC estimation; the corresponding RMSE values of NAPK and APK were 13.36 mu g cm(-2) and 9.35 mu g cm(-2), respectively. Our analysis confirms the operational potential of PROSAIL model inversion for the retrieval of biophysical variables by integrating APK.
分类号: TP
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Research on variety identification of common bean seeds based on hyperspectral and deep learning
作者:Li, Shujia;Sun, Laijun;Zhang, Lingyu;Bai, Hongyi;Wang, Ziyue;Jin, Xiuliang;Feng, Guojun
关键词:Hyperspectral; Common bean; Convolutional neural network; Deep learning
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
Assessing tea foliar quality by coupling image segmentation and spectral information of multispectral imagery
作者:Kong, Xue;Li, Zhenhai;Xu, Bo;Meng, Yang;Yang, Guijun;Liao, Qinhong;Wang, Yu;Xu, Ze;Yang, Haibin
关键词:Tea; Image segmentation; Picked leaves; Partial least squares regression (PLSR)
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning