Cloning of Two Acetylcholinesterase Genes and Analysis of Point Mutations Putatively Associated with Triazophos Resistance in Chilo auricilius (Lepidoptera: Pyralidae)

文献类型: 外文期刊

第一作者: Li, Xiao-Huan

作者: Li, Xiao-Huan;Zhang, Zhi-Chun;Liu, Bao-Sheng;Fang, Ji-Chao;Li, Xiao-Huan;Fang, Ji-Chao;Huang, Shui-Jin

作者机构:

关键词: Chilo auricilius;acetylcholinesterase;point mutation;resistance;triazophos

期刊名称:JOURNAL OF ECONOMIC ENTOMOLOGY ( 影响因子:2.381; 五年影响因子:2.568 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Acetylcholinesterase (AChE) is the target of organophosphate (OP) and carbamate insecticides. Mutations in the AChE gene (ace) leading to decreased insecticide susceptibility is the main resistance mechanism in insects. In this study, two Chilo auricilius acetylcholinesterase genes, designated as Caace1 and Caace2, were cloned using RT-PCR and RACE. Caace1 cDNA is 2534 bp, with ORF of 2082 bp, and it encodes an acetylcholinesterase 1 (CaAChE1) protein comprising a calculated 693 amino acid (aa) residues. Caace2 cDNA contains 2280 bp, with a full-length ORF of 1917 bp, encoding acetylcholinesterase 2 (CaAChE2) comprising a calculated 638 aa residues. At the aa level, CaAChE1 displays the highest similarity (97%) with the Chilo suppressalis AChE1, and CaAChE2 shows the highest similarity with the C. suppressalis AChE2 (99%). From the restriction fragment length polymorphism (RFLP) PCR (RFLP-PCR) analysis, one mutation in Caace1, similar to the ace1 mutation associated with triazophos resistance in C. suppressalis, was detected. Detailed examination of field populations of C. auricilius indicated this resistance mutation in C. auricilius is still quite infrequent. Based on the assay of AChE activity and RFLP-PCR testing, an individual that contains resistance mutation has lower AChE activities, while the individual that does not contain the resistance mutation has higher AChE activities. This study provides a basis for future investigations into the mechanism of OP resistance in C. auricilius, as well as a guidance for C. auricilius control with reasonable choice of pesticides.

分类号: Q969.9

  • 相关文献

[1]Mutation in acetylcholinesterase1 associated with triazophos resistance in rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae). Jiang, Xiaojing,Jiang, Weihua,Han, Zhaojun,Qu, Mingjing,Denholm, Ian,Fang, Jichao. 2009

[2]Cross-resistance and possible mechanisms of chlorpyrifos resistance in Laodelphax striatellus (Fallen). Wang, Lihua,Zhang, Yueliang,Liu, Yanhe,Fang, Jichao,Zhang, Yueliang,Han, Zhaojun,Liu, Yanhe. 2010

[3]A simple and sensitive competitive bio-barcode immunoassay for triazophos based on multi-modified gold nanoparticles and fluorescent signal amplification. Zhang, Chan,Jiang, Zejun,Jin, Maojun,Chen, Ge,Cao, Xiaolin,Cui, Xueyan,Zhang, Yudan,Li, Ruixing,Wang, Jing,Zhang, Chan,Jiang, Zejun,Jin, Maojun,Chen, Ge,Cao, Xiaolin,Cui, Xueyan,Zhang, Yudan,Li, Ruixing,Wang, Jing,Du, Pengfei,Du, Pengfei,Du, Pengfei,Abd El-Aty, A. M.,Abd El-Aty, A. M.. 2018

[4]Highly sensitive detection of triazophos pesticide using a novel bio-bar-code amplification competitive immunoassay in a micro well plate-based platform. Du, Pengfei,Jin, Maojun,Zhang, Chan,Chen, Ge,Cui, Xueyan,Zhang, Yudan,Zhang, Yanxin,Zou, Pan,Jiang, Zejun,Cao, Xiaolin,She, Yongxin,Jin, Fen,Wang, Jing. 2018

[5]Gender-specific metabolic responses in gonad of mussel Perna viridis to triazophos. Zhang, Linbao,Cai, Wengui. 2017

[6]Enhanced Competitive Chemiluminescent Enzyme Immunoassay for the Trace Detection of Insecticide Triazophos. Jin, Maojun,Shao, Hua,Jin, Fen,Shi, Xiaomei,Wang, Jing,Gui, Wenjun. 2012

[7]Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain. Liu, Rui,Liang, Xiao,Xiang, Dandan,Guo, Yirong,Zhu, Guonian,Liang, Xiao,Liu, Yihua. 2016

[8]Competitive colorimetric triazophos immunoassay employing magnetic microspheres and multi-labeled gold nanoparticles along with enzymatic signal enhancement. Du, Pengfei,Jin, Maojun,Chen, Ge,Zhang, Chan,Cui, Xueyan,Zhang, Yudan,Zhang, Yanxin,Zou, Pan,Jiang, Zejun,Cao, Xiaolin,She, Yongxin,Jin, Fen,Wang, Jing.

[9]Detection of a mutation at codon 43 of the rpsL gene in Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae by PCR-RFLP. Zhang, Y.,Yang, X.,Zhou, F. Y.,Zhang, A. F.,Chen, Y.,Gao, T. C.,Zhang, Y.,Zhu, X. F.,Chen, Y.,Zhou, M. G.. 2015

[10]Artificial selection for determinate growth habit in soybean. Lee, Rian,McClean, Phillip E.,Lee, Rian,McClean, Phillip E.,Wang, Xiaobo,Li, Yinghui,Qiu, Lijuan,Tian, Zhixi,Ma, Jianxin,Specht, James E.,Nelson, Randall L.,Nelson, Randall L..

[11]Expression patterns of NLRC5 and key genes in the STAT1 pathway following infection with Salmonella pullorum. Qiu, Lingling,Ma, Teng,Chang, Guobin,Guo, Xiaomin,Xu, Lu,Zhang, Yang,Zhao, Wenming,Xu, Qi,Chen, Guohong,Liu, Xiangping.

[12]Identification of novel alleles induced by EMS-mutagenesis in key genes of kernel hardness and starch biosynthesis in wheat by TILLING. Li, Wenjie,Zhao, Baocun,Li, Wenjie,Guo, Huijun,Xie, Yongdun,Zhao, Linshu,Gu, Jiayu,Zhao, Shirong,Liu, Luxiang,Wang, Yongbin,Wang, Guangjin.

[13]D27E mutation of VTC1 impairs the interaction with CSN5B and enhances ascorbic acid biosynthesis and seedling growth in Arabidopsis. Li, Shenghui,Yu, Yanwen,Wang, Fengru,Dong, Jingao,Li, Shenghui,Wang, Juan,Yu, Yanwen,Huang, Rongfeng,Wang, Juan,Huang, Rongfeng.

[14]Continuing evolution of canine parvovirus in China: Isolation of novel variants with an Ala5Gly mutation in the VP2 protein. Wang, Jianke,Lin, Peng,Zhao, Hang,Cheng, Yuening,Zhu, Hongwei,Wu, Hua,Cheng, Shipeng,Cheng, Yuening,Jiang, Zhong.

[15]Functional analysis of a point mutation in the ryanodine receptor of Plutella xylostella (L.) associated with resistance to chlorantraniliprole. Guo, Lei,Pei, Liang,Gao, Xiwu,Wang, Yi,Liu, Shangzhong,Zhou, Xuguo,Li, Zhenyu.

[16]Changing a conserved amino acid in R2R3-MYB transcription repressors results in cytoplasmic accumulation and abolishes their repressive activity in Arabidopsis. Zhou, Meiliang,Sun, Zhanmin,Wang, Chenglong,Tang, Yixiong,Wu, Yanmin,Wang, Chenglong,Shao, Jirong,Zhang, Xinquan,Zhu, Xuemei.

[17]Resistance monitoring of Chilo suppressalis (Walker) (Lepidoptera: Crambidae) to chlorantraniliprole in eight field populations from east and central China. Lu, Yanhui,Bai, Qi,Zheng, Xusong,Lu, Zhongxian,Wang, Guorong,Zhong, Liequan,Zhang, Facheng.

[18]Identification and characterization of microsatellite markers from Musa balbisiana. Feng, Su-ping,Wu, Yao-ting,Wang, Jing-yi,Wang, Jing-yi,Huang, Bing-zhi,Chen, Ye-yuan.

[19]Effects of DIMBOA on several enzymatic systems in Asian corn borer, Ostrinia furnacalis (Guenee). Yan, FM,Xu, CG,Li, SG,Lin, CS,Li, JH. 1995

[20]Temporal allocation of metabolic tolerance in the body of beet armyworm in response to three gossypol-cotton cultivars. Wu Gang,Guo JianYing,Wan FangHao,Wu Gang,Harris, Marvin K.. 2009

作者其他论文 更多>>