Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a genetic population derived from a cross between feral and cultivated-type watermelon

文献类型: 外文期刊

第一作者: Ren, Runsheng

作者: Ren, Runsheng;Li, Pingfang;Xu, Jinhua;Zhang, Man;Liu, Guang;Yao, Xiefeng;Yang, Xingping;Ren, Runsheng;Ray, Rumiana;Kilian, Andrzej

作者机构:

关键词: Watermelon;Linkage map;SNP;High density;DArTseq

期刊名称:MOLECULAR GENETICS AND GENOMICS ( 影响因子:3.291; 五年影响因子:3.257 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an economically important vegetable crop grown extensively worldwide. To facilitate the identification of agronomically important traits and provide new information for genetic and genomic research on this species, a high-density genetic linkage map of watermelon was constructed using an F-2 population derived from a cross between elite watermelon cultivar K3 and wild watermelon germplasm PI 189225. Based on a sliding window approach, a total of 1,161 bin markers representing 3,465 SNP markers were mapped onto 11 linkage groups corresponding to the chromosome pair number of watermelon. The total length of the genetic map is 1,099.2 cM, with an average distance between bins of 1.0 cM. The number of markers in each chromosome varies from 62 in chromosome 07 to 160 in chromosome 05. The length of individual chromosomes ranged between 61.8 cM for chromosome 07 and 140.2 cM for chromosome 05. A total of 616 SNP bin markers showed significant (P < 0.05) segregation distortion across all 11 chromosomes, and 513 (83.3 %) of these distorted loci showed distortion in favor of the elite watermelon cultivar K3 allele and 103 were skewed toward PI 189225. The number of SNPs and InDels per Mb varied considerably across the segregation distorted regions (SDRs) on each chromosome, and a mixture of dense and sparse SNPs and InDel SDRs coexisted on some chromosomes suggesting that SDRs were randomly distributed throughout the genome. Recombination rates varied greatly among each chromosome, from 2.0 to 4.2 centimorgans per megabase (cM/Mb). An inconsistency was found between the genetic and physical positions on the map for a segment on chromosome 11. The high-density genetic map described in the present study will facilitate fine mapping of quantitative trait loci, the identification of candidate genes, map-based cloning, as well as marker-assisted selection (MAS) in watermelon breeding programs.

分类号: Q7

  • 相关文献

[1]Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). Zhou, Xiaojing,Ren, Xiaoping,Chen, Yulin,Huang, Li,Huang, Shunmou,Liao, Boshou,Lei, Yong,Yan, Liyin,Jiang, Huifang,Xia, Youlin,Huang, Shunmou. 2014

[2]Biparental Resequencing Coupled With SNP Genotyping of a Segregating Population Offers Insights Into the Landscape of Recombination and Fixed Genomic Regions in Elite Soybean. Li, Ying-hui,Liu, Yu-lin,Liu, Zhang-xiong,Liu, Bo,Chang, Ru-zhen,Qiu, Li-juan,Reif, Jochen C.,Mette, Michael F.. 2014

[3]Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha(-1). Liu, Guangzhou,Hou, Peng,Xie, Ruizhi,Ming, Bo,Wang, Keru,Li, Shaokun,Xu, Wenjuan,Liu, Wanmao,Yang, Yunshan. 2017

[4]A high-density genetic map for P genome of Agropyron Gaertn. based on specific-locus amplified fragment sequencing (SLAF-seq). Zhang, Yan,Zhang, Jinpeng,Gao, Ainong,Zhang, Jing,Yang, Xinming,Liu, Weihua,Li, Xiuquan,Li, Lihui,Zhang, Yan,Huang, Long.

[5]Effects of dietary live and heat-inactive baker's yeast on growth, gut health, and disease resistance of Nile tilapia under high rearing density. Ran, Chao,Huang, Lu,Hu, Jun,He, Suxu,Li, Zhimin,Wang, Yibing,Liu, Zhi,Xu, Li,Yang, Yalin,Zhou, Zhigang,Tacon, Philippe.

[6]SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis). Tan, Li-Qiang,Wang, Li-Yuan,Xu, Li-Yi,Wu, Li-Yun,Zhang, Cheng-Cai,Wei, Kang,Bai, Pei-Xian,Li, Hai-Lin,Cheng, Hao,Tan, Li-Qiang,Xu, Li-Yi,Peng, Min,Qi, Gui-Nian,Wang, Li-Yuan,Wu, Li-Yun,Zhang, Cheng-Cai,Wei, Kang,Bai, Pei-Xian,Li, Hai-Lin,Cheng, Hao. 2016

[7]High Throughput Mining and Characterization of Microsatellites from Common Carp Genome. Ji, Peifeng,Zhang, Yan,Zhao, Zixia,Wang, Jian,Li, Jiongtang,Xu, Peng,Sun, Xiaowen,Li, Chao,Sun, Xiaowen. 2012

[8]Construction of an integrated map and location of a bruchid resistance gene in mung bean. Wang, Lixia,Wu, Chuanshu,Zhong, Min,Zhao, Dan,Mei, Li,Chen, Honglin,Wang, Suhua,Cheng, Xuzhen,Liu, Chunji. 2016

[9]A genetic linkage map of marine shrimp Penaeus (Fenneropenaeus) chinensis based on AFLP, SSR, and RAPD markers. Liu Bo,Wang Qingyin,Li Jian,Liu Ping,He Yuying,Liu Bo. 2010

[10]Genetic mapping and QTL analysis for body weight in Jian carp (Cyprinus carpio var. Jian) compared with mirror carp (Cyprinus carpio L.). Gu Ying,Lu Cuiyun,Zhang Xiaofeng,Li Chao,Sun Xiaowen,Lu Cuiyun,Yu Juhua. 2015

[11]Construction of a high-density linkage map and mapping of sex determination and growth-related loci in the mandarin fish (Siniperca chuatsi). Sun, Chengfei,Ye, Xing,Dong, Junjian,Zeng, Qingkai,Chen, Zhihang,Tian, Yuanyuan,Lu, Maixin,Niu, Yongchaox,Hu, Wushu,Zeng, Qingkai,Chen, Zhihang,Tian, Yuanyuan,Zhang, Jin. 2017

[12]AFLP-based genetic linkage map of marine shrimp Penaeus (Fenneropenaeus) chinensis. Li, Zhaoxia,Li, Jian,Wang, Qingyin,He, Yuying,Liu, Ping. 2006

[13]Identification of QTLs involved in pod-shatter resistance in Brassica napus L.. Wen, Y. C.,Zhang, S. F.,Wang, J. P.,Zhu, J. C.,He, J. P.,Cao, J. H.,Yi, B.,Wen, J..

[14]High-density Linkage Map of Cultivated Allotetraploid Cotton Based on SSR, TRAP, SRAP and AFLP Markers. Yu, Jiwen,Yu, Shuxun,Lu, Cairui,Wang, Wu,Fan, Shuli,Song, Meizhen,Lin, Zhongxu,Zhang, Xianlong,Zhang, Jinfa.

[15]Quantitative Trait Locus Analysis for Yield Traits of Cassava (Manihot esculenta Crantz). Yan, Qingxiang,Li, Kaimian,Zhang, Xueqin,Ye, Jianqiu,Chen, Songbi,Li, Qing X.,Huang, Dongyi. 2014

[16]Construction of a genetic linkage map for silver carp (Hypophthalmichthys molitrix). Zhang, L.,Yang, G.,Guo, S.,Wei, Q.,Zou, G.. 2010

[17]Identification of Quantitative Trait Loci (QTLs) for Flowering Time Using SSR Marker in Maize under Water Stress. Xiao, YN,Li, XH,Zhang, SH,Wang, XD,Li, MS,Zheng, YL.

[18]Analyzing genetic relationships in Bombyx mori using intersimple sequence repeat amplification. Li, Muwang,Hou, Chengxiang,Miao, Xuexia,Xu, Anying,Huang, Yongping.

[19]Linkage map construction using InDel and SSR markers and QTL analysis of heading traits in Brassica oleracea var. capitata L.. Lv, Honghao,Wang, Qingbiao,Zhang, Yangyong,Yang, Limei,Fang, Zhiyuan,Wang, Xiaowu,Liu, Yumei,Zhuang, Mu,Lin, Yan,Yu, Hailong,Liu, Bo.

[20]Identification of quantitative trait loci across interspecific F-2, F-2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Yu, Jiwen,Yu, Shuxun,Wu, Man,Zhai, Honghong,Li, Xingli,Fan, Shuli,Song, Meizhen,Gore, Michael,Zhang, Jinfa.

作者其他论文 更多>>