Effects of various amino acids as organic nitrogen sources on the growth and biochemical composition of Chlorella pyrenoidosa

文献类型: 外文期刊

第一作者: Zhang, Weiguo

作者: Zhang, Weiguo;Zhang, Zhenhua;Yan, Shaohua

作者机构:

关键词: Microalgae;Amino acid;Growth;Biochemical composition

期刊名称:BIORESOURCE TECHNOLOGY ( 影响因子:9.642; 五年影响因子:9.237 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: This study investigated the effects of eighteen L-amino acids on the growth and biochemical composition of Chlorella pyrenoidosa. Under the nitrate deficiency condition, ten L-amino acids were found to exert stronger stimulative effects on the algal growth than the other amino acids. After 10-day culture, addition of 0.5 g L (1) the above mentioned ten amino acids significantly increased the cellular protein contents by 441.3-110.8%, respectively, and significantly decreased the carbohydrate contents by 60.7-16.2%, respectively. Under the normal nitrate condition, the cellular biochemical composition was not significantly affected by addition of serine, leucine, proline, aspartic acid, asparagine, and glycine, whereas addition of aspartic acid and arginine increased the algal biomass by 110.2% and 62.8% compared with the control. Finally, the significance of this work in the biotechnological application of culturing C. pyrenoidosa in organic wastewater rich in amino acids was further discussed. (C) 2015 Published by Elsevier Ltd.

分类号: Q

  • 相关文献

[1]Effects of the diatom Cylindrotheca fusiformis on the growth of the sea cucumber Apostichopus japonicus and water quality in ponds. Li, Junwei,Dong, Shuanglin,Tian, Xiangli,Shi, Ce,Wang, Fang,Gao, Qinfeng,Li, Junwei,Zhu, Changbo.

[2]Dietary arginine requirement of juvenile hybrid sturgeon (Acipenser schrenckiifxAcipenser baeriio). Wang, Liansheng,Wu, Junguang,Wang, Chang'an,Li, Jinnan,Zhao, Zhigang,Luo, Liang,Du, Xue,Xu, Qiyou,Wu, Junguang.

[3]Growth, nutrient utilization and amino acid digestibility of dairy calves. fed milk replacers containing different amounts of protein in the preruminant period. Li, H.,Diao, Q. Y.,Zhang, N. F.,Fan, Z. Y.. 2008

[4]Biochemical composition and quality of turbot (Scophthalmus maximus) eggs throughout the reproductive season. Jia, Yudong,Meng, Zhen,Liu, Xinfu,Lei, Jilin,Jia, Yudong,Meng, Zhen,Liu, Xinfu,Lei, Jilin. 2014

[5]The detrimental effects of CO2-driven chronic acidification on juvenile Pacific abalone (Haliotis discus hannai). Li, Jiaqi,Mao, Yuze,Jiang, Zengjie,Zhang, Jihong,Fang, Jianguang,Li, Jiaqi,Mao, Yuze,Jiang, Zengjie,Zhang, Jihong,Fang, Jianguang,Bian, Dapeng. 2018

[6]Potential of utilizing jellyfish as food in culturing Pampus argenteus juveniles. Liu, Chun-sheng,Chen, Si-qing,Zhuang, Zhi-meng,Yan, Jing-ping,Liu, Chang-lin,Cui, He-tong.

[7]Biofuel from Microalgae: Current Status, Opportunity and Challenge. Wang, Hui,Liu Yuhuan,Ruan, Roger,Ruan, Roger,Liu, Guangxian. 2014

[8]Analytical study on pyrolyzed products of Desmodesmus sp cultivated in BG11. Li Gang,Huang Zhigang,Ji Fang,Xiang Shunan,Zhou Yuguang,Jiang Mengmeng,Zhou Yuguang,Jiang Mengmeng. 2017

[9]Thermal cracking products and bio-oil production from microalgae Desmodesmus sp.. Li Gang,Huang Zhigang,Xiang Shunan,Ji Fang,Zhou Yuguang,Zhou Yuguang. 2017

[10]Chemically enhanced lipid production from microalgae under low sub-optimal temperature. Wang, Yuancong,He, Bing,Chen, Yi-Feng,Sun, Zhilan. 2016

[11]Supercritical CO2 extraction of docosahexaenoic acid from Schizochytrium limacinum using vegetable oils as entrainer. He, Bing,Wang, Yuancong,Dou, Xiao,Chen, Yi-Feng. 2017

[12]Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages. Gong, Yangmin,Guo, Xiaojing,Wan, Xia,Liang, Zhuo,Jiang, Mulan.

[13]Effects of dominant microalgae species and bacterial quantity on shrimp production in the final culture season. Cao, Yu-cheng,He, Jian-guo,Cao, Yu-cheng,Wen, Guo-liang,Li, Zhuo-jia,Liu, Xiao-zhu,Hu, Xiao-juan,Zhang, Jia-song.

[14]Improving Cell Growth and Lipid Accumulation in Green Microalgae Chlorella sp via UV Irradiation. Liu, Shuyu,Zhao, Yueping,Ao, Xiyong,Wu, Minghong,Liu, Shuyu,Ma, Fang,Liu, Li,Ma, Liyan.

[15]Microalgal cell disruption via extrusion for the production of intracellular valuables. Wang, Meng,Chen, Shibao,Cheng, He,Wen, Shumei,Wu, Xia,Zhang, Dongmei,Cong, Wei,Cheng, He,Yuan, Qipeng. 2018

[16]Cultivation of Microalgae in Dairy Farm Wastewater Without Sterilization. Ding, Jinfeng,Zhao, Fengmin,Cao, Youfu,Xing, Li,Liu, Wei,Mei, Shuai,Li, Shujun.

[17]Pretreatment of poultry waste anaerobic digested effluents by chitosan flocculation for Chlorella pyrenoidosa growth and pollutants removal. Wu, Yu,Zhang, Hong,Wu, Yu,Wang, Mengzi,Cao, Wei,Liu, Zhidan,Lu, Haifeng. 2017

[18]Life cycle assessment of pyrolysis process of Desmodesmus sp.. Li Gang,Ji Fang,Zhou Yuguang,Dong Renjie,Ji Fang,Zhou Yuguang,Dong Renjie,Ji Fang. 2015

[19]Isolation of microalgae with growth restriction and nutrient removal from alkaline wastewater. Ji Fang,Li Gang,Zhou Yuguang,Dong Renjie,Ji Fang,Li Gang,Zhou Yuguang,Dong Renjie,Ji Fang,Wang Yingkuan. 2015

[20]Microalgae: A promising feedstock for biodiesel. Deng, Xiaodong,Li, Yajun,Fei, Xiaowen,Fei, Xiaowen. 2009

作者其他论文 更多>>