SOIL RESPIRATION AND NITRIFICATION-DENITRIFICATION IN MAIZE/SOYBEAN INTERCROPPING SYSTEM

文献类型: 外文期刊

第一作者: Gao, Yang

作者: Gao, Yang;Li, Xinqiang;Shen, Xiaojun;Sun, Jingsheng;Duan, Aiwang

作者机构:

关键词: barometric process separation (BaPS);denitrification rate;intercropping;nitrification rate;soil respiration

期刊名称:OXIDATION COMMUNICATIONS ( 影响因子:0.489; 五年影响因子:0.337 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In an experimental field with maize/soybean intercropping, soil respiration, nitrification, and denitrification in the intercropping system with two nitrogen treatments (N0 - 0 kg N ha(-1) and N1 112.5 kg N ha(-1)) were investigated using the Barometric Process Separation (BaPS) method. Results indicated that root mass density in the rhizosphere in N1 was greater than that in N0. There was no significant difference in root mass density in the non-rhizosphere between two N treatments. Soil respiration rate in the rhizosphere in N1 was 1.1 times that in N0, while the difference in soil respiration in the non-rhizo sphere between two N treatments was not significant. Soil nitrification rate in maize and soybean strips in N1 was 1.71 and 1.82 times that in N0, respectively. For two N treatments, soil nitrification in the rhizosphere was greater than that in the non-rhizosphere in intercropping, mainly because of the difference in root density. Soil denitrification rate was only measured in the late growth stage, indicating that denitrification was not the main way of nitrogen losses in maize/soybean intercropping in the experimental site. Results indicated that soil nitrification was the main way of N2O emission in intercropped filed in the experimental zone.

分类号: O6

  • 相关文献

[1]Effect of maize intercropped with alfalfa and sweet clover on soil carbon dioxide emissions during the growing season in North China Plain. Huang, Jian-xiong,Sui, Peng,Nie, Sheng-wei,Gao, Wang-sheng,Chen, Yuan-quan,Nie, Sheng-wei. 2013

[2]Nitrate removal from groundwater using solid-phase denitrification process without inoculating with external microorganisms. Wang, X. M.,Wang, J. L.. 2013

[3]High Oxygen Concentration Increases the Abundance and Activity of Bacterial Rather than Archaeal Nitrifiers in Rice Field Soil. Ke, Xiubin,Lu, Wei,Ke, Xiubin,Conrad, Ralf.

[4]Soil respiration, glomalin content, and enzymatic activity response to straw application in a wheat-maize rotation system. Liang, Guopeng,Wu, Huijun,Houssou, Albert A.,Cai, Dianxiong,Wu, Xueping,Gao, Lili,Wang, Bisheng,Li, Shengping,Liang, Guopeng. 2018

[5]Components of soil respiration and its monthly dynamics in rubber plantation ecosystems. Wu, Zhixiang,Xie, Guishui,Zhou, Zhaode,Wu, Zhixiang,Guan, Limin,Chen, Bangqian,Yang, Chuan,Lan, Guoyu,Xie, Guishui. 2013

[6]Does the different photosynthetic pathway of plants affect soil respiration in a subtropical wetland?. Chen, Jingrui,Wang, Qiulin,Li, Ming,Liu, Fan,Chen, Jingrui,Wang, Qiulin,Li, Wei. 2016

[7]CO2 Emission from Acidified Black Soils Amended with Alkaline Ameliorants of Lime and Plant Ash. Han, Zuoqiang,Wang, Lianfeng,Zhang, Xilin,Wang, Lianfeng. 2010

[8]Carbon budget of a rainfed spring maize cropland with straw returning on the Loess Plateau, China. Hao, Weiping,Mei, Xurong,Gao, Xiang,Gu, Fengxue,Li, Haoru,Gong, Daozhi,Mao, Lili,Zhang, Zuguang.

[9]Soil respiration is driven by fine root biomass along a forest chronosequence in subtropical China. Wang, Chao,Ma, Yinlei,Huang, Yuanyuan,He, Jin-Sheng,Wang, Chao,Ma, Yinlei,Huang, Yuanyuan,He, Jin-Sheng,Trogisch, Stefan,Trogisch, Stefan,Geng, Yan,Scherer-Lorenzen, Michael. 2017

[10]Differential responses of short-term soil respiration dynamics to the experimental addition of nitrogen and water in the temperate semi-arid steppe of Inner Mongolia, China. Qi, Yuchun,Liu, Xinchao,Dong, Yunshe,Peng, Qin,Sun, Liangjie,Jia, Junqiang,Cao, Congcong,Liu, Xinchao,Sun, Liangjie,Jia, Junqiang,Cao, Congcong,He, Yating.

[11]Effect of land use change on soil respiration from freshwater marshes in northeast of China. Jiang, Changsheng,Hao, Qingju,Zhang, Junke,Tang, Qiwen,Jiang, Changsheng,Hao, Qingju. 2010

[12]Community size, activity and C:N stoichiometry of soil microorganisms following reforestation in a Karst region. Hu, Ning,Hu, Xiaomin,Li, Hui,Tang, Zheng,Li, Zhongfang,Li, Guichun,Lou, Yilai,Jiang, Yong.

[13]Annual and seasonal variations of Q(10) soil respiration in the sub-alpine forests of the Eastern Qinghai-Tibet Plateau, China. Chen, Baoyu,Liu, Shirong,Chen, Baoyu,Ge, Jianping,Chu, Jinxiang. 2010

[14]Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations. Xu, Jun,Wu, Xiaohu,Dong, Fengshou,Liu, Xingang,Zheng, Yongquan.

[15]Soil carbon dioxide emission from intensively cultivated black soil in Northeast China: nitrogen fertilization effect. Ni, Kang,Ding, Weixin,Cai, Zucong,Ni, Kang,Wang, Yufeng,Zhang, Xilin,Zhou, Baoku. 2012

[16]Effects of deer disturbance on soil respiration in a subtropical floodplain wetland of the Yangtze River. Chen, Jingrui,Wang, Qiulin,Li, Ming,Liu, Fan,Yin, Liyan,Chen, Jingrui,Li, Wei,Chen, Jingrui,Wang, Qiulin,Li, Wei,Li, Wei. 2013

[17]Soil Aggregation and Microbial Responses to Straw Pulping Byproducts. Xiao, C.,Fauci, A.,Bezdicek, D. F.,Pan, W. L.,Xiao, C.,McKean, W. T..

[18]A Root-Zone Soil Regime of Wheat: Physiological and Growth Responses to Furrow Irrigation in Raised Bed Planting in Northern China. Kong, Ling'an,Wang, Fahong,Feng, Bo,Li, Shengdong,Si, Jisheng,Zhang, Bin.

[19]Nitrous oxide emissions from black soils with different pH. Wang, Lianfeng,Du, Huachao,Han, Zuoqiang,Zhang, Xilin,Wang, Lianfeng.

[20]Light interception and utilization in relay intercrops of wheat and cotton. L. Zhang,W. van der Werf,L. Bastiaans,S. Zhang,B. Li,J.H.J. Spiertz. 2008

作者其他论文 更多>>