Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice

文献类型: 外文期刊

第一作者: Cao, Changxiang

作者: Cao, Changxiang;Lou, Xiaojin;Cao, Liming;Zhang, Yuexiong;Liu, Fang;Qiu, Yongfu;Li, Rongbai;Zhang, Yuexiong;Liu, Fang;Qiu, Yongfu;Li, Rongbai;Huang, Fengkuan

作者机构:

关键词: B3 domain protein;BPH29;brown planthopper resistance;map-based cloning;Oryza sativa L;plant-insect defence;recessive gene

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A brown planthopper resistance recessive gene, BPH29, was cloned which contained a B3 DNA-binding domain and conferred resistance by a mechanism that was similar to plant defence against pathogens.Rice (Oryza sativa L.) production, essential for global food security, is threatened by the brown planthopper (BPH). The breeding of host-resistant crops is an economical and environmentally friendly strategy for pest control, but few resistance gene resources have thus far been cloned. An indica rice introgression line RBPH54, derived from wild rice Oryza rufipogon, has been identified with sustainable resistance to BPH, which is governed by recessive alleles at two loci. In this study, a map-based cloning approach was used to fine-map one resistance gene locus to a 24kb region on the short arm of chromosome 6. Through genetic analysis and transgenic experiments, BPH29, a resistance gene containing a B3 DNA-binding domain, was cloned. The tissue specificity of BPH29 is restricted to vascular tissue, the location of BPH attack. In response to BPH infestation, RBPH54 activates the salicylic acid signalling pathway and suppresses the jasmonic acid/ethylene-dependent pathway, similar to plant defence responses to biotrophic pathogens. The cloning and characterization of BPH29 provides insights into molecular mechanisms of plant-insect interactions and should facilitate the breeding of rice host-resistant varieties.

分类号: Q94

  • 相关文献

[1]Mapping of a major resistance gene to the brown planthopper in the rice cultivar Rathu Heenati. Sun, LH,Su, CC,Wang, CM,Zhai, HQ,Wan, JM. 2005

[2]Mapping of a new gene for brown planthopper resistance in cultivated rice introgressed from Oryza eichingeri. Liu, GQ,Yan, HH,Fu, Q,Qian, Q,Zhang, ZT,Zhai, WX,Zhu, LH.

[3]A new locus for resistance to brown planthopper identified in the indica rice variety DV85. Su, CC,Wan, J,Zhai, HQ,Wang, CM,Sun, LH,Yasui, H,Yoshimura, A. 2005

[4]Improvement of bacterial blight and brown planthopper resistance in an elite restorer line Huazhan of Oryza. Yi, Zili,Xiao, Youlun,Li, Jinjiang,Yu, Jianghui,Meng, Qiucheng,Deng, Xiangyang,Xiao, Guoying,Xiao, Youlun.

[5]IDENTIFICATION OF A SET OF RFLP PROBES FOR SUBSPECIES DIFFERENTIATION IN ORYZA-SATIVA L. QIAN, HR,ZHUANG, JY,LIN, HX,LU, J,ZHENG, KL. 1995

[6]Genome-Wide Disruption of Gene Expression in Allopolyploids but Not Hybrids of Rice Subspecies. Xu, Chunming,Bai, Yan,Zhao, Na,Hu, Lanjuan,Liu, Bao,Xu, Chunming,Wendel, Jonathan F.,Lin, Xiuyun,Zhao, Na,Gong, Zhiyun. 2014

[7]QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Mei, HW,Xu, JL,Li, ZK,Yu, XQ,Guo, LB,Wang, YP,Ying, CS,Luo, LJ. 2006

[8]YGL138(t), encoding a putative signal recognition particle 54 kDa protein, is involved in chloroplast development of rice. Zhang, Fantao,Luo, Xiangdong,Xie, Jiankun,Hu, Biaolin,Wan, Yong. 2013

[9]Loss-of-function mutation of rice SLAC7 decreases chloroplast stability and induces a photoprotection mechanism in rice. Fan, Xiaolei,Wu, Jiemin,Chen, Taiyu,Chen, Hao,Zhou, Fei,Lin, Yongjun,Fan, Xiaolei,Wu, Jiemin,Chen, Taiyu,Chen, Hao,Zhou, Fei,Lin, Yongjun,Tie, Weiwei. 2015

[10]Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding programme. He, Y. X.,Zheng, T. Q.,Wang, L. F.,Gao, Y. M.,Zhai, H. Q.,Xu, J. L.,Zhu, L. H.,Li, Z. K.,He, Y. X.,Xu, Z. J.,He, Y. X.,Hao, X. B.,Hua, Z. T.,Li, Z. K.. 2010

[11]LEAFY HEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice. Xiong, Guo Sheng,Hu, Xing Ming,Jiao, Yong Qing,Yu, Yan Chun,Chu, Cheng Cai,Li, Jia Yang,Qian, Qian,Wang, Yong Hong. 2006

[12]Identifying different types of dedifferentiated microspores from indica-japonica F-1 hybrids with subspecies-differentiating RFLP probes in rice. Xie, JH,Lu, J,Zhuang, JY,Lin, HX,Qian, HR,Gao, MW,Zheng, KL. 1997

[13]Mutation of the RDR1 gene caused genome-wide changes in gene expression, regional variation in small RNA clusters and localized alteration in DNA methylation in rice. Wang, Ningning,Zhang, Di,Wang, Zhenhui,Xun, Hongwei,Wang, Hui,Huang, Wei,Liu, Ying,Li, Ning,Ou, Xiufang,Zhang, Chunyu,Liu, Bao,Wang, Ningning,Ma, Jian,Lin, Xiuyun,Zhang, Chunyu,Wang, Ningning,Wang, Ming-Bo. 2014

[14]Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. Wang, Wen-Sheng,Zhao, Xiu-Qin,Li, Min,Huang, Li-Yu,Xu, Jian-Long,Zhang, Fan,Cui, Yan-Ru,Fu, Bin-Ying,Li, Zhi-Kang,Li, Min,Xu, Jian-Long,Fu, Bin-Ying,Li, Zhi-Kang.

[15]Large-scale production of enhancer trapping lines for rice functional genomics. Yang, YZ,Peng, H,Huang, HM,Wu, JX,Ha, SR,Huang, DF,Lu, TG.

[16]Genetic mapping of a QTL controlling source-sink size and heading date in rice. Cheng, Shihua.

[17]Construction of chromosomal segment substitution lines and genetic dissection of introgressed segments associated with yield determination in the parents of a super-hybrid rice. Liu, Xi,Zhao, Zhigang,Liu, Linglong,Xiao, Yinghui,Tian, Yunlu,Liu, Shi-Jia,Chen, Liangming,Wang, Yihua,Liu, Yuqiang,Chen, Saihua,Zhang, Wenwei,Wang, Chunming,Jiang, Ling,Wan, Jianmin,Wan, Jianmin.

[18]Transcriptome Analysis of a Progeny of Somatic Hybrids of Cultivated Rice (Oryza sativa L.) and Wild Rice (Oryza meyeriana L.) With High Resistance to Bacterial Blight. Wang, Xu-Ming,Zhou, Jie,Yang, Yong,Yu, Fei-Bo,Chen, Juan,Yu, Chu-Lang,Wang, Fang,Cheng, Ye,Yan, Cheng-Qi,Chen, Jian-Ping,Yu, Fei-Bo,Chen, Juan. 2013

[19]Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa). Li, Zhi,Zhang, Yingxin,Liu, Lin,Liu, Qunen,Bi, Zhenzhen,Yu, Ning,Cheng, Shihua,Cao, Liyong,Li, Zhi,Li, Zhi,Zhang, Yingxin,Cheng, Shihua,Cao, Liyong.

[20]Genetic dissection of large grain shape in rice cultivar 'Nanyangzhan' and validation of a grain thickness QTL (qGT3.1) and a grain length QTL (qGL3.4). Zhao, Da,Li, Pingbo,Wang, Lingqiang,Sun, Liang,Xia, Duo,Luo, Lijun,Gao, Guanjun,Zhang, Qinglu,He, Yuqing,Zhao, Da,Li, Pingbo,Wang, Lingqiang,Sun, Liang,Xia, Duo,Luo, Lijun,Gao, Guanjun,Zhang, Qinglu,He, Yuqing,Luo, Lijun. 2017

作者其他论文 更多>>
  • Health assessment based on exposure to microplastics in tropical agricultural soil

    作者:Lin, Bigui;Wang, Luya;Liu, Beibei;Liu, Fang;Wu, Lin;Wei, Chaoxian;Lin, Bigui;Wang, Luya;Liu, Beibei;Wu, Lin;Wei, Chaoxian;Lin, Bigui;Wang, Luya;Liu, Beibei;Wu, Lin;Wei, Chaoxian;Chen, Qiyu;Liu, Zhilei;Chen, Xichao;Zhang, Zongyao;Wen, Shaobai;Liu, Fang

    关键词:Microplastics; Agricultural soil; Size distribution analysis; Dimensionality of MPs; Health exposure assessment

  • Widespread incomplete lineage sorting and introgression shaped adaptive radiation in the Gossypium genus

    作者:Xu, Yanchao;Zhou, Zhongli;Cai, Xiaoyan;Umer, Muhammad Jawad;Hou, Yuqing;Wang, Yuhong;Wang, Kunbo;Yu, Shuxun;Liu, Fang;Xu, Yanchao;Wei, Yangyang;Liu, Yuling;Peng, Renhai;Xu, Yanchao;Cai, Xiaoyan;Boden, Scott A.;Safdar, Luqman B.;Jin, Dingsha;Wall, Sarah Brooke;Zhang, Baohong;Liu, Fang

    关键词:cotton speciation; Gossypium genus; incomplete lineage sorting; ILS; phylogenetic analysis; gene tree resolution

  • MCSS: microbial community simulator based on structure

    作者:Hui, Xingqi;Liu, Fang;Hui, Xingqi;Yang, Jinbao;Pan, Weihua;Yang, Jinbao;Sun, Jinhuan;Liu, Fang

    关键词:metagenome; microbiome communities; long reads; simulator; assembly

  • Linkage and association mapping in multi-parental populations reveal the genetic basis of carotenoid variation in maize kernels

    作者:Yin, Pengfei;Fu, Xiuyi;Feng, Haiying;Yang, Yanyan;Xu, Jing;Zhang, Xuan;Wang, Min;Ji, Shenghui;Zhao, Binghao;Fang, Hui;Du, Xiaoxia;Li, Yaru;Hu, Shuting;Li, Kun;Xu, Shutu;Li, Zhigang;Li, Jiansheng;Yang, Xiaohong;Yin, Pengfei;Fu, Xiuyi;Feng, Haiying;Yang, Yanyan;Xu, Jing;Zhang, Xuan;Wang, Min;Ji, Shenghui;Zhao, Binghao;Fang, Hui;Du, Xiaoxia;Li, Yaru;Hu, Shuting;Li, Kun;Xu, Shutu;Li, Zhigang;Li, Jiansheng;Yang, Xiaohong;Fu, Xiuyi;Wang, Yuandong;Liu, Fang;Li, Jiansheng;Yang, Xiaohong;Xiao, Yingni;Yang, Xiaohong

    关键词:Carotenoids; Linkage analysis; Association mapping; Plastid terminal oxidase

  • Genetic Analysis of Cotton Fiber Traits in Gossypium Hybrid Lines

    作者:Wang, Heng;Cai, Xiaoyan;Umer, Muhammad Jawad;Xu, Yanchao;Hou, Yuqing;Zheng, Jie;Liu, Fang;Wang, Kunbo;Zhou, Zhongli;Chen, Mengshan;Ma, Shuping;Yu, Jingzhong;Cai, Xiaoyan;Zheng, Jie;Liu, Fang;Liu, Fang;Cai, Xiaoyan;Hou, Yuqing;Zheng, Jie;Liu, Fang

    关键词:

  • Transcriptional landscape of cotton roots in response to salt stress at single-cell resolution

    作者:Li, Pengtao;Liu, Qiankun;Wei, Yangyang;Liu, Yuling;Lu, Quanwei;Hu, Nan;Wang, Tao;Cheng, Shuang;Li, Zhaoguo;Zhao, Zilin;Li, Yanfang;Peng, Renhai;Li, Pengtao;Liu, Qiankun;Xing, Chaozhu;Han, Jiangping;Cai, Xiaoyan;Zhou, Zhongli;Wang, Kunbo;Liu, Fang;Li, Pengtao;Xing, Chaozhu;Liu, Fang;Peng, Renhai;Liu, Qiankun;Cheng, Shuang;Li, Zhaoguo;Peng, Renhai;Xu, Zhongping;Zhu, Xiangqian;Jin, Shuangxia;Ding, Fang;Zhang, Baohong

    关键词:cotton; salt stress; scRNA-seq; root cell types; virus-induced gene silencing

  • Assessment of benthic ecological status and heavy metal contamination in an estuarine intertidal mudflat in the Northern Bohai Sea

    作者:Li, Ang;Li, Jiaqi;Liu, Lulei;Xue, Suyan;Zhang, Meng;Tang, Yuze;Mao, Yuze;Li, Ang;Li, Jiaqi;Zhu, Ling;Liu, Lulei;Xue, Suyan;Zhang, Meng;Tang, Yuze;Mao, Yuze;Liu, Fang

    关键词:Geligang; Macrobenthos; Benthic ecological quality; M-AMBI; Heavy metals