Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction

文献类型: 外文期刊

第一作者: Sun, Wei

作者: Sun, Wei;Sun, Hong Wei;Yang, Shu Ke;Lu, Xing Bo;Xu, Xiao Hui;Chen, Hao;Wang, Juan;Sang, Ya Lin;Chen, Hao;Sang, Ya Lin

作者机构:

关键词: Maize;MAPK;Gene family;Gene expression;Abiotic stress;Plant reproduction

期刊名称:FUNCTIONAL & INTEGRATIVE GENOMICS ( 影响因子:3.41; 五年影响因子:3.616 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Mitogen-activated protein kinases (MAPKs) play important roles in stress responses and development in plants. Maize (Zea mays), an important cereal crop, is a model plant species for molecular studies. In the last decade, several MAPKs have been identified in maize; however, their functions have not been studied extensively. Genome-wide identification and expression analysis of maize MAPK genes could provide valuable information for understanding their functions. In this study, 20 non-redundant maize MAPK genes (ZmMPKs) were identified via a genome-wide survey. Phylogenetic analysis of MAPKs from maize, rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), and tomato (Solanum lycopersicum) classified them into four major classes. ZmMPKs in the same class had similar domains, motifs, and genomic structures. Gene duplication investigations suggested that segmental duplications made a large contribution to the expansion of ZmMPKs. A number of cis-acting elements related to plant development and response to stress and hormones were identified in the promoter regions of ZmMPKs. Furthermore, transcript profile analysis in eight tissues and organs at various developmental stages demonstrated that most ZmMPKs were preferentially expressed in reproductive tissues and organs. The transcript abundance of most ZmMPKs changed significantly under salt, drought, cold, or abscisic acid (ABA) treatments, implying that they might participate in abiotic stress and ABA signaling. These expression analyses indicated that ZmMPKs might serve as linkers between abiotic stress signaling and plant reproduction. Our data will deepen our understanding of the complexity of the maize MAPK gene family and provide new clues to investigate their functions.

分类号: Q78

  • 相关文献

[1]Genome-Wide Identification of the Maize Calcium-Dependent Protein Kinase Gene Family. Ma, Pengda,Liu, Jingying,Yang, Xiangdong,Ma, Rui.

[2]Genome-wide characterization and comparative analysis of the MLO gene family in cotton. Xiaoyan Wang,Qifeng Ma,Lingling Dou,Zhen Liu,Renhai Peng,Shuxun Yu. 2016

[3]Genome-scale identification of MLO domain-containing genes in soybean (Glycine max L. Merr.). Shen, Qi,Zhao, Jinming,Xiang, Yang,Shen, Qi,Du, Caifu,Xiang, Yang,Qin, Xinrong,Cao, Jinxuan. 2012

[4]Genome-wide identification and expression analysis of the BTB domain-containing protein gene family in tomato. Li, Jinhua,Su, Xiaoxing,Yang, Wei,Pan, Yu,Su, Chenggang,Zhang, Xingguo,Li, Jinhua,Su, Xiaoxing,Yang, Wei,Pan, Yu,Su, Chenggang,Zhang, Xingguo,Wang, Yinlei. 2018

[5]The banana E2 gene family: Genomic identification, characterization, expression profiling analysis. Dong, Chen,Hu, Huigang,Jue, Dengwei,Zhao, Qiufang,Chen, Hongliang,Xie, Jianghui,Jia, Liqiang,Dong, Chen,Hu, Huigang,Jue, Dengwei,Zhao, Qiufang,Chen, Hongliang,Xie, Jianghui,Jia, Liqiang.

[6]Genome-wide identification, classification and expression profiling of nicotianamine synthase (NAS) gene family in maize. Zhou, Xiaojin,Zhao, Qianqian,Liu, Xiaoqing,Zhang, Shaojun,Sun, Cheng,Fan, Yunliu,Zhang, Chunyi,Chen, Rumei,Zhou, Xiaojin,Zhao, Qianqian,Liu, Xiaoqing,Zhang, Shaojun,Sun, Cheng,Fan, Yunliu,Zhang, Chunyi,Chen, Rumei,Li, Suzhen. 2013

[7]Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers. Xiao, Xiaohu,Tang, Chaorong,Fang, Yongjun,Zhou, Binhui,Qi, Jiyan,Zhang, Yi,Xiao, Xiaohu,Zhou, Binhui,Zhang, Yi,Yang, Meng. 2014

[8]Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. Feng, Shangguo,Yang, Yanjun,Xu, Mingfeng,Wang, Huizhong,Shen, Chenjia,Yue, Runqing,Zhang, Lei. 2015

[9]Cloning and characterization of a putative transcription factor induced by abiotic stress in Zea mays. Jia, Zhiwei,Lian, Yun,Zhu, Yun,He, Junguang,Cao, Zuping,Wang, Guoying. 2009

[10]A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Lu, Min,Ying, Sheng,Zhang, Deng-Feng,Shi, Yun-Su,Song, Yan-Chun,Wang, Tian-Yu,Li, Yu. 2012

[11]Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses. Yue, Runqing,Lu, Caixia,Han, Xiaohua,Qi, Jianshuang,Yan, Shufeng,Tie, Shuanggui,Yue, Runqing,Lu, Caixia,Han, Xiaohua,Qi, Jianshuang,Yan, Shufeng,Tie, Shuanggui,Sun, Tao,Peng, Tingting. 2015

[12]Isolation and characterization of a cDNA encoding a papain-like cysteine protease from alfalfa. Yan, Longfeng,Han, Jianguo,Sun, Yan,Yan, Longfeng,Yang, Qingchuan,Kang, Junmei,Liu, Zhipeng,Wu, Mingsheng.

[13]Characterization of the calcineurin B-Like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Zhang, Fan,Li, Li,Jiao, Zhenzhen,Chen, Yangsong,Liu, Hui,Chen, Xunji,Fu, Junjie,Wang, Guoying,Zheng, Jun,Zhang, Fan,Li, Li,Jiao, Zhenzhen,Chen, Yangsong,Liu, Hui,Chen, Xunji,Fu, Junjie,Wang, Guoying,Zheng, Jun,Zhang, Fan,Chen, Xunji.

[14]Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Ying, Sheng,Zhang, Deng-Feng,Fu, Jing,Shi, Yun-Su,Song, Yan-Chun,Wang, Tian-Yu,Li, Yu,Ying, Sheng,Fu, Jing. 2012

[15]Characterization and expression analysis of six MADS-box genes in maize (Zea mays L.). Zhang, Zhongbao,Li, Huiyong,Zhang, Dengfeng,Liu, Yinghui,Fu, Jing,Shi, Yunsu,Song, Yanchun,Wang, Tianyu,Li, Yu,Zhang, Zhongbao,Liu, Yinghui. 2012

[16]Identification of 7 stress-related NAC transcription factor members in maize (Zea mays L.) and characterization of the expression pattern of these genes. Lu, Min,Sun, Qing-Peng,Pan, Jin-bao,Zhang, Deng-feng,Wang, Tian-Yu.

[17]Isolation, structural analysis, and expression characteristics of the maize (Zea mays L.) hexokinase gene family. Zhang, Zhongbao,Zhang, Jiewei,Chen, Yajuan,Li, Ruifen,Wang, Hongzhi,Ding, Liping,Wei, Jianhua,Zhang, Zhongbao,Zhang, Jiewei,Chen, Yajuan,Li, Ruifen,Wang, Hongzhi,Ding, Liping,Wei, Jianhua.

[18]Genome-wide analysis and environmental response profiling of the FK506-binding protein gene family in maize (Zea mays L.). Yu, Yanli,Zhang, Hui,Li, Wencai,Mu, Chunhua,Zhang, Fajun,Wang, Liming,Meng, Zhaodong.

[19]Transcriptome Profile Analysis of Maize Seedlings in Response to High-salinity, Drought and Cold Stresses by Deep Sequencing. Shan, Xiaohui,Yuan, Yaping,Li, Yidan,Jiang, Yu,Jiang, Zhilei,Hao, Wenyuan.

[20]Characterization of the ZmCK1 Gene Encoding a Calcium-Dependent Protein Kinase Responsive to Multiple Abiotic Stresses in Maize. Wang, Chang-Tao,Shao, Jun-Ming.

作者其他论文 更多>>