Simultaneous determination of florfenicol with its metabolite based on modified quick, easy, cheap, effective, rugged, and safe sample pretreatment and evaluation of their degradation behavior in agricultural soils

文献类型: 外文期刊

第一作者: Xu, Mingfei

作者: Xu, Mingfei;Qian, Mingrong;Zhang, Hu;Wang, Jianmei;Wu, Huizhen;Ma, Junwei

作者机构:

关键词: Agricultural soil;Degradation;Florfenicol;Florfenicol amine;Tandem mass spectrometry

期刊名称:JOURNAL OF SEPARATION SCIENCE ( 影响因子:3.645; 五年影响因子:2.943 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A simple and simultaneous method for the determination of florfenicol and its metabolite florfenicol amine in agricultural soils using modified quick, easy, cheap, effective, rugged, and safe sample pretreatment and reversed-phase high-performance liquid chromatography with tandem mass spectrometry is presented. Florfenicol and its metabolite florfenicol amine residues in agricultural soils were extracted with alkalized acetonitrile and an aliquot was cleaned up with Si(CH2)(3)NH(CH2)(2)NH2 and C-18 sorbent, which were powder materials. High-performance liquid chromatography with tandem mass spectrometry was applied to simultaneously determine the level of florfenicol and florfenicol amine in agricultural soils. Excellent linearity was achieved for florfenicol and florfenicol amine over a range of concentrations from 0.1-500 mu g/L with coefficients more than 0.99. Average recoveries at four different levels (0.005, 0.05, 0.5, and 5.0 mg/kg) for florfenicol and florfenicol amine ranged from 73.6-94.9% with relative standard deviations of 2.9-12.5%. The limits of detection for florfenicol and florfenicol amine in agricultural soils were 2.0 mu g/kg, and the limits of quantification were 6.0 mu g/kg. Based on this method, the degradation behavior of florfenicol and its metabolite florfenicol amine in three soils (Nanchang, Hangzhou, and Changchun) under sterilized and native conditions was investigated and the transformation rate of florfenicol amine from florfenicol was evaluated.

分类号: O6

  • 相关文献

[1]Development of a subcritical water extraction approach for trace analysis of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry tissues. Xiao, Zhiming,Song, Rong,Rao, Zhenghua,Wei, Shulin,Jia, Zheng,Suo, Decheng,Fan, Xia.

[2]Single dose pharmacokinetic study of flofenicol in tilapia (Oreochromis niloticus x O. aureus) held in freshwater at 22 degrees C. Feng, Jing-Bin,Feng, Jing-Bin,Feng, Jing-Bin,Jia, Xiao-Ping. 2009

[3]Effects of florfenicol on the antioxidant status, detoxification system and biomolecule damage in the swimming crab (Portunus trituberculatus). Ren, Xianyun,Wang, Zhuqing,Gao, Baoquan,Liu, Ping,Li, Jian,Ren, Xianyun,Wang, Zhuqing,Gao, Baoquan,Liu, Ping,Li, Jian,Wang, Zhuqing.

[4]Tissue distribution and elimination of florfenicol in tilapia (Oreochromis niloticus x O-caureus) after a single oral administration in freshwater and seawater at 28 degrees C. Feng, Jing-Bin,Jia, Xiao-Ping,Li, Liu-Dong,Feng, Jing-Bin. 2008

[5]Diffusion-limited PBPK model for predicting pulmonary pharmacokinetics of florfenicol in pig. Qian, M. R.,Yang, H.,Qian, M. R.,Yang, H.,Wang, Q. Y.,Sun, G. Z.,Ke, X. B.,Yang, J. J.,Yang, B.,Huang, L. L.,Gao, J. D..

[6]Do dietary betaine and the antibiotic florfenicol influence the intestinal autochthonous bacterial community in hybrid tilapia (Oreochromis niloticus a (TM) Euro x O. aureus a (TM),)?. He, Suxu,Zhou, Zhigang,Liu, Yuchun,Cao, Yanan,Meng, Kun,Shi, Penjun,Yao, Bin,Ringo, Einar. 2012

[7]Effects of the antibiotic growth promoters flavomycin and florfenicol on the autochthonous intestinal microbiota of hybrid tilapia (Oreochromis niloticus female x O. aureus male). He, Suxu,Zhou, Zhigang,Liu, Yuchun,Cao, Yanan,Meng, Kun,Shi, Pengjun,Yao, Bin,Ringo, Einar. 2010

[8]Electrocatalytic reduction of low-concentration thiamphenicol and florfenicol in wastewater with multi-walled carbon nanotubes modified electrode. Deng, Dongli,Deng, Fei,Zhang, Jinzhong,Liu, Jiang,Deng, Dongli,Tang, Bobin,Zhang, Jinzhong.

[9]Development of a high-performance liquid chromatography method for the determination of florfenicol in animal feedstuffs. Yang, JinJing,Huang, LingLi,Sun, GuiZhi,Ke, XianBing,Yang, Bo,Qian, MingRong.

[10]Pollution assessment, distribution and sources of PAHs in agricultural soils of Pearl River Delta - The biggest manufacturing base in China. Li, Yongtao,Li, Fangbai,Zhang, Tianbin,Yang, Guoyi,Chen, Junjian,Wan, Hongfu. 2007

[11]Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Luo, Zhongkui,Wang, Enli,Feng, Wenting,Luo, Yiqi,Baldock, Jeff.

[12]IMPACTS OF WASTEWATER IRRIGATION ON THE DISTRIBUTION OF HEAVY METALS IN AGRICULTURAL SOILS: A CASE STUDY IN FANGSHAN, BEIJING. Han, Ping,Li, Cheng,Feng, Xiao-yuan,Ma, Zhi-hong,Lu, An-xiang,Pan, Li-gang,Wang, Ji-hua,Han, Ping.

[13]Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Li, ZJ,Xu, JM,Tang, CX,Wu, JJ,Muhammad, A,Wang, HZ.

[14]Environment Quality Evaluation of Heavy Metals in agricultural soils of Shilou town in Fangshan district of Beijing. Han, Ping,Feng, Xiaoyuan,Wang, Jihua. 2014

[15]Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Lu, Anxiang,Zhang, Shuzhen,Lu, Anxiang,Wang, Jihua,Han, Ping,Qin, Xiangyang,Wang, Kaiyi.

[16]Driving forces of heavy metal changes in agricultural soils in a typical manufacturing center. Qiu, Menglong,Liu, Liming,Li, Fangbai,Wang, Qi,Chen, Junjian,Yang, Guoyi.

[17]Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale. Wang, Qi,Li, Fangbai,Xie, Zhiyi.

[18]Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Yu, Xiang-Yang,Mu, Chang-Li,Liu, Xian-Jin,Gu, Cheng,Liu, Cun.

[19]Occurrence, sources, and potential human health risks of polycyclic aromatic hydrocarbons in agricultural soils of the coal production area surrounding Xinzhou, China. Zhao, Long,Hou, Hong,Shangguan, Yuxian,Xu, Yafei,Cheng, Bin,Zhao, Ruifen,Zhang, Yigong,Hua, Xiaozan,Huo, Xiaolan,Zhao, Xiufeng.

[20]Performance comparison of dispersive solid-phase extraction and multiplug filtration cleanup methods for the determination of tefuryltrione in plant and environmental samples using UHPLC-MS/MS. Yu, Yang,Ji, Mingshan,Tao, Yan,Dong, Fengshou,Xu, Jun,Liu, Xingang,Wu, Xiaohu,Zheng, Yongquan. 2017

作者其他论文 更多>>