Introgression of the crtRB1 gene into quality protein maize inbred lines using molecular markers

文献类型: 外文期刊

第一作者: Liu, Li

作者: Liu, Li;Ding, Meiling;Chen, Wei;Fan, Xingming;Jeffers, Daniel;Zhang, Yudong;Kang, Manjit S.

作者机构:

关键词: Provitamin A;crtRB1 gene;Functional markers;Foreground selection;Background selection;Maize (Zea mays L.)

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Quality protein maize (QPM; Zea mays L.) has effectively enhanced levels of the amino acids, lysine, and tryptophan, over normal maize and provided balanced dietary protein for the health and development of monogastric animals and humans. However, as in normal maize, QPM varieties are low in provitamin A (ProVA), a precursor of vitamin A, which can lead to vitamin A deficiency in humans when maize is a significant part of their diet. In this study, maize inbred Hp321-1 carrying the favorable alleles crtRB1-5'TE-2 and crtRB1-3'TE-1 that can enhance levels of ProVA, was used as donor for improving ProVA in QPM inbred lines CML161 and CML171. Functional markers for identifying the favorable alleles crtRB1-5'TE-2 and crtRB1-3'TE-1 were used in foreground selection, and simple sequence repeat markers were used in background selection for the BC1F1, BC2F1, and BC2F2 generations. The background recovery rates were 77.4 and 84.5 % for CML161 and CML171 populations, respectively, in the BC1F1 generation, and 89.9 and 92.1 % in the BC2F2 generation. With foreground and background selection, the mean ProVA concentration has been improved from 1.60 mu g g(-1) in the parent of CML161 to 5.25 mu g g(-1) in its BC2F3 offspring, from 1.80 mu g g(-1) in the parent of CML171 to 8.14 mu g g(-1) in its BC2F3 offspring while maintaining similar QPM characteristics of the recurrent parents. The success from this study offers maize breeders a procedure for increasing ProVA in QPM lines, which will greatly mitigate vitamin A deficiency and protein-energy malnutrition in developing countries.

分类号: Q94

  • 相关文献

[1]Identification of two functional markers associated with drought resistance in maize. Liu, Sisi,Hao, Zhuanfang,Weng, Jianfeng,Li, Mingshun,Zhang, Degui,Zhang, Shihuang,Li, Xinhai,Liu, Sisi,Pan, Guangtang.

[2]Meeting demands for increased cereal production in China. He, Zhonghu,Xia, Xianchun,Peng, Shaobing,He, Zhonghu,Lumpkin, Thomas Adam. 2014

[3]The impact of modern plant breeding on dominant Chinese wheat cultivars (Triticum aestivum L.) revealed by SSR and functional markers. Meng, Lingzhi,Xiang, Chao,Liu, Hongwei,Yang, Li,Li, Hongjie,Zhang, Hongjun,Zhou, Yang,Mai, Chunyan,Wei, Yunliang,Yu, Liqiang. 2018

[4]Identification of SNPs and development of functional markers for LMW-GS genes at Glu-D3 and Glu-B3 loci in bread wheat (Triticum aestivum L.). Zhao, X. L.,Ma, W.,Gale, K. R.,Lei, Z. S.,He, Z. H.,Sun, Q. X.,Xia, X. C.. 2007

[5]Improvement of Agrobacterium-mediated transformation efficiency of maize (Zea mays L.) genotype Hi-II by Optimizing Infection and Regeneration Conditions. Xu, You,Ren, Wen,Liu, Ya,Zhao, Jiuran,Xu, You. 2016

[6]Genetic analysis of maize kernel thickness by quantitative trait locus identification. Wen, G. Q.,Liu, X. H.,Liao, C. M.. 2015

[7]Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population. Zhang, H. M.,Wu, X. P.,Liu, X. H.,Sun, Y.,Li, Z. Q.,Zhang, H. M.,Wu, X. P.,Sun, Y.,Li, Z. Q.. 2014

[8]QTL mapping for ear length and ear diameter under different nitrogen regimes in maize. Zhang, Hongmei,Li, Runzhi,Zheng, Zuping,Li, Zhong,He, Chuan,Liu, Daihui,Luo, Yangchun,Zhang, Guoqin,Liu, Xiaohong,Tan, Zhenbo,Zhang, Hongmei. 2010

[9]Identification of Functional Genetic Variations Underlying Drought Tolerance in Maize Using SNP Markers. Hao, Zhuanfang,Li, Xinhai,Xie, Chuanxiao,Weng, Jianfeng,Li, Mingshun,Zhang, Degui,Liu, Lingling,Liu, Sisi,Zhang, Shihuang,Liang, Xiaoling. 2011

[10]Stability of QTL Across Environments and QTL-by-Environment Interactions for Plant and Ear Height in Maize. Zhang Yan,Li Yong-xiang,Wang Yang,Liu Zhi-zhai,Peng Bo,Tan Wei-wei,Wang Di,Shi Yun-su,Song Yan-chun,Wang Tian-yu,Li Yu,Liu Cheng,Sun Bao-cheng,Liu Zhi-zhai. 2010

[11]Effects of Shading at Different Stages After Anthesis on Maize Grain Weight and Quality at Cytology Level. Jia Shi-fang,Li Cong-feng,Dong Shu-ting,Zhang Ji-wang,Jia Shi-fang,Li Cong-feng. 2011

[12]Bulked Segregant RNA-seq Reveals Differential Expression and SNPs of Candidate Genes Associated with Waterlogging Tolerance in Maize. Du, Hewei,Wang, Hongwei,Ding, Shuangcheng,Zhang, Binglin,Tian, Xiaohai,Xu, Yunbi,Du, Hewei,Zhu, Jianxiong,Su, Hang,Huang, Ming,Luo, An,Wei, Shudong,Du, Hewei,Xu, Yunbi,Xu, Yunbi. 2017

[13]Cloning and transformation of SCMV CP gene and regeneration of transgenic maize plants showing resistance to SCMV strain MDB. Liu, Xiaohong,Tan, Zhenbo,He, Daowen,Li, Wanchen,Zhang, Hongmei. 2009

[14]Quantitative trait locus analysis for kernel width using maize recombinant inbred lines. Hui, G. Q.,Yang, H. P.,Luo, Q.,Zhang, H. M.,Wen, G. Q.,Liu, X. H.,Song, H. X.,Wen, L.,Sun, Y.,Zhang, H. M.. 2015

[15]Comparative transcriptome analysis of sweet corn seedlings under low-temperature stress. Mao, Jihua,Yu, Yongtao,Yang, Jing,Li, Gaoke,Li, Chunyan,Qi, Xitao,Wen, Tianxiang,Hu, Jianguang. 2017

[16]Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize. Du, Hewei,Shen, Xiaomeng,Zhang, Zuxin,Du, Hewei,Huang, Min,Du, Hewei,Zhang, Zuxin,Huang, Yiqin. 2016

[17]Descriptive statistics and correlation analysis of agronomic traits in a maize recombinant inbred line population. Zhang, H. M.,Hui, G. Q.,Luo, Q.,Liu, X. H.,Sun, Y.,Zhang, H. M.,Hui, G. Q.,Luo, Q.,Sun, Y.. 2014

[18]Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000s. Ci, Xiaoke,Li, Mingshun,Xu, Jiashun,Lu, Zhenyu,Bai, Pengfei,Ru, Gaolin,Zhang, Degui,Li, Xinhai,Bai, Li,Xie, Chuanxiao,Hao, Zhuanfang,Zhang, Shihuang,Ci, Xiaoke,Dong, Shuting,Liang, Xiaoling.

[19]Both major and minor QTL associated with plant height can be identified using near-isogenic lines in maize. Ding, Xiaoyu,Liu, Zhizhai,Ding, Xiaoyu,Wu, Xun,Chen, Lin,Li, Chunhui,Shi, Yunsu,Song, Yanchun,Zhang, Dengfeng,Wang, Tianyu,Li, Yu,Li, Yong-Xiang,Wu, Xun.

[20]Isolating the Mutator Transposable Element Insertional Mutant Gene mio16 of Maize Using Double Selected Amplification of Insertion Flanking Fragments (DSAIFF). Zhong Wen-juan,Zhang Mei-dong,Zheng Yong-lian,Gao You-jun,Yang Liu-qi,Wang Ming-chun,Yang Wen-peng. 2012

作者其他论文 更多>>