Inheritance of sex forms in watermelon (Citrullus lanatus)

文献类型: 外文期刊

第一作者: Ji, Gaojie

作者: Ji, Gaojie;Gao, Junping;Shen, Huolin;Zhang, Jie;Gong, Guoyi;Shi, Jianting;Zhang, Haiying;Ren, Yi;Guo, Shaogui;Xu, Yong

作者机构:

关键词: Watermelon;Sex forms;Inheritance;Epistasis;F-1 Hybrid;Sex expression

期刊名称:SCIENTIA HORTICULTURAE ( 影响因子:3.463; 五年影响因子:3.672 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Inheritance of sex forms in watermelon (Citrullus lanatus) is not well described. In this study, we made five pairs of crosses of watermelon plants with different sex forms and grew progeny in two different seasons to investigate the inheritance of sex forms and the seasonal effect on sex expression. We showed that environmental factors have no effect on sex forms, but they affect sex expression on individual flowers as more pistillate flowers were observed in spring than in autumn. This suggests that short photoperiod and low temperatures promote formation of pistillate flowers in watermelon. In the F-2 population of the cross of andromonoecious (SL3H or AKKZW) x monoecious (XHB), the segregation ratio is 9 monoecious: 3 trimonoecious: 4 andromonoecious, and the segregation ratio in BC1P1 (F-1 x andromonoecious parent) is 1 monoecious: 1 trimonoecious: 2 andromonoecious. The segregation ratio in the F-2 population of the gynoecious (XHBGM) x monoecious (XHB) is 3 monoecious: I gynoecious whereas the segregation ratio in the BC1P1 (F-1 x gynoecious parent) is 1 monoecious: 1 gynoecious. The segregation ratio in the F-2 population of gynoecious x andromonecious cross is 27 monoecious: 12 andromonoecious: 9 gynoecious: 9 trimonoecious: 4 hermaphroditic: 3 gynomonoecious. The segregation ratio in the BC1P1 population (F1 x gynoecious) is 1 monoecious: 1 gynoecious whereas the segregation ratio in the BC1P2 (F-1 x andromonoecious) is 1 monoecious: 1 trimonoecious: 2 andromonoecious. Taken together, the results suggested that three recessive alleles, andromonoecious (a), gynoecious (gy) and trimonoecious (tm) control the sex forms in watermelon, and a allele is epistatic to the tm allele. The following phenotype-genotype relationships are proposed for each of the sex forms in watermelon: monoecious, A_Gy_Tm_; trimonoecious, A_Gy_tmtm; andromonoecious, aaGy_Tm_ or aaGy_tmtm; gynoecious,A,gygyTm_; gynomonoecious, A_gygytmtm; and hermaphroditic, aagygyTm_ or aagygytmtm. (C) 2015 Elsevier B.V. All rights reserved.

分类号: S6

  • 相关文献

[1]Genetic Analysis on Fruit Cut Cracking of Watermelon. Jiang, Hai-kun,Zhang, Qi-an,Fang, Lin. 2010

[2]Replication of pistillate plants of Ricinus communis L. and investigation of the sex stability and genetic variation of the somaclones. Tan, Meilian,Yan, Mingfang,Wang, Lei,Yan, Xingchu,Fu, Chunling,Wang, Lijun. 2013

[3]The inheritance of two novel subgynoecious genes in cucumber (Cucumis sativus L.). Tian, Yun,Lu, Xiangyang,Chen, Huiming,Liu, Xiaohong,Chen, Huiming,Tian, Yun,Lu, Xiangyang.

[4]QTL Detection and Epistasis Analysis for Heading Date Using Single Segment Substitution Lines in Rice (Oryza sativa L.). Li Guang-xian,Li Si-shen,Chen Ai-hua,Liu Xu,Wang Wen-ying,Ding Han-feng,Li Jun,Liu Wei,Yao Fang-yin,Li Guang-xian. 2014

[5]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

[6]Genetic dissection of growth traits in a Chinese indigenous x commercial broiler chicken cross. Sheng, Zheya,Hu, Xiaoxiang,Li, Ning,Sheng, Zheya,Pettersson, Mats E.,Shen, Xia,Carlborg, Orjan,Luo, Chenglong,Qu, Hao,Shu, Dingming. 2013

[7]QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Mei, HW,Xu, JL,Li, ZK,Yu, XQ,Guo, LB,Wang, YP,Ying, CS,Luo, LJ. 2006

[8]RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper (Nilaparvata lugens). Xu, XF,Mei, HW,Luo, LJ,Cheng, XN,Li, ZK. 2002

[9]Identification of genome-wide SNP-SNP interactions associated with important traits in chicken. Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Kramer, Luke M.,Reecy, James M.. 2017

[10]Mapping QTL with Main Effect, Digenic Epistatic and QTL x Environment Interactions of Panicle Related Traits in Rice (Oryza sativa). Leng, Yujia,Huang, Lichao,Chen, Long,Ren, Deyong,Yang, Yaolong,Zhang, Guangheng,Hu, Jiang,Zhu, Li,Guo, Longbiao,Qian, Qian,Zeng, Dali,Leng, Yujia,Lin, Yongjun,Leng, Yujia,Lin, Yongjun,Xue, Dawei. 2017

[11]The Statistical Power of Inclusive Composite Interval Mapping in Detecting Digenic Epistasis Showing Common F2 Segregation Ratios. Wang, Jiankang. 2012

[12]Quantitative Trait Loci Mapping for Chlorophyll Fluorescence and Associated Traits in Wheat (Triticum aestivum). Yang, De-Long,Jing, Rui-Lian,Chang, Xiao-Ping,Li, We.

[13]Bayesian Analysis for Genetic Architectures of Body Weights and Morphological Traits Using Distorted Markers in Japanese Flounder Paralichthys olivaceus. Cui, Yan,Wang, Hongwei,Liu, Haijin,Yang, Runqing,Cui, Yan,Qiu, Xuemei.

[14]QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits. Xu, Pei,Wu, Xiaohua,Wang, Baogen,Hu, Tingting,Lu, Zhongfu,Liu, Yonghua,Qin, Dehui,Wang, Sha,Li, Guojing. 2013

[15]Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L.. Wang, Furong,Xu, Zhenzhen,Sun, Ran,Gong, Yongchao,Liu, Guodong,Zhang, Jingxia,Wang, Liuming,Zhang, Chuanyun,Zhang, Jun,Wang, Furong,Xu, Zhenzhen,Sun, Ran,Fan, Shoujin,Zhang, Jun.

[16]Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Mei, HW,Luo, LJ,Ying, CS,Wang, YP,Yu, XQ,Guo, LB,Paterson, AH,Li, ZK. 2003

[17]Identification of QTLs associated with physiological nitrogen use efficiency in rice. Cho, Young-Il,Jiang, Wenzhu,Chin, Joong-Hyoun,Piao, Zhongze,Cho, Yong-Gu,McCouch, Susan R.,Koh, Hee-Jong. 2007

[18]Statistical method for mapping QTLs for complex traits based on two backcross populations. Zhu ZhiHong,Yang Jian,Xu HaiMing,Hayart, Yousaf,Cao LiYong,Lou XiangYang. 2012

[19]Advanced Backcross QTL Analysis for the Whole Plant Growth Duration Salt Tolerance in Rice (Oryza sativa L.). Chai Lu,Zhang Jian,Zhang Fan,Zheng Tian-qing,Zhao Xiu-qing,Wang Wen-sheng,Xu Jian-long,Li Zhi-kang,Pan Xiao-biao,Jauhar, Ali. 2014

[20]Genome-wide response to selection and genetic basis of cold tolerance in rice (Oryza sativa L.). Zhang, Fan,Gao, Yong-Ming,Li, Zhi-Kang,Ma, Xiu-Fang,Hao, Xian-Bin. 2014

作者其他论文 更多>>