Phosphorus release from the soils in the Yellow River Delta: dynamic factors and implications for eco-restoration

文献类型: 外文期刊

第一作者: Lv, Y. -C.

作者: Lv, Y. -C.;Xu, G.;Sun, J. -N.;Brestic, M.;Shao, H. -B.;Brestic, M.;Zivcak, M.;Shao, H. -B.

作者机构:

关键词: macronutrient;dynamic leaching;fertilizer;plant-available

期刊名称:PLANT SOIL AND ENVIRONMENT ( 影响因子:1.799; 五年影响因子:2.169 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Root-released organic acids are reported to increase phosphorus (P) availability in the soil. In this study a dynamic study of P release from soil was conducted to get more exact information of the organic acids role in P availability in soil. The results show that organic acids in different concentrations significantly affected P release. In a concentration of 10 mmol/L, no significant differences can be observed among citric acid, malic acid and acetic acid in terms of their effect on the release of soil P. However, when the concentration reduced to 1 mmol/L, both the total release amount and the maximum release amount of soil P significantly declined, and the decline degree were citric acid < malic acid < oxalic acid and acetic acid. When the concentration of organic acids was 0.1 mmol/L no P has been leached in the leaching solution of any of the four types of organic acids. The parabolic diffusion equation showed that organic acids can improve the migration rate of P in the soil, with the following order of citric acid > malic acid > acetic acid > oxalic acid. The higher the concentration of the organic acids was, the higher the migration rate of P would be. Given that the P needed by plants basically migrates by means of diffusion, under the condition of P deficiency of plants, improving the secretion amount of organic acids can effectively increase the biological utilization rate of P.

分类号: S

  • 相关文献

[1]Soil organic carbon fractions and management index after 20 yr of manure and fertilizer application for greenhouse vegetables. Lou, Y.,Xu, M.,Wang, W.,Sun, X.,Liang, C..

[2]Long-Term Evaluation of Manure Application on Maize Yield and Nitrogen Use Efficiency in China. Duan, Yinghua,Xu, Minggang,Wang, Bairen,Yang, Xueyun,Huang, Shaomin,Gao, Suduan.

[3]Influence of Data Preprocessing on the Quantitative Determination of Nutrient Content in Poultry Manure by Near Infrared Spectroscopy. Chen, L. J.,Han, L. J.,Xing, L..

[4]Impacts of Organic and Inorganic Fertilizers on Nitrification in a Cold Climate Soil are Linked to the Bacterial Ammonia Oxidizer Community. Fan, Fenliang,Yang, Qianbao,Li, Zhaojun,Liang, Yongchao,Wei, Dan,Cui, Xi'an.

[5]Short-Term Irrigation Level Effects on Residual Nitrate in Soil Profile and N Balance from Long-Term Manure and Fertilizer Applications in the Arid Areas of Northwest China. Wang, Ping,E, Sheng-Zhe,Zhang, Da-Wei,Yang, Sheng-Mao,Chen, Yi,Yang, Sheng-Mao,Wang, Ping,Suo, Dong-Rang,Malhi, S. S.,Guo, Yong-Jie,E, Sheng-Zhe.

[6]Dynamics of Soil and Grain Micronutrients as Affected by Long-Term Fertilization in an Aquic Inceptisol. Li Ben-Yin,Huang Shao-Min,Shen A-Lin,Li Ben-Yin,Shen A-Lin,Xu Jian-Ming,Wei Ming-Bao,Zhang, H. L.,Ruan Xin-Ling.

[7]Phosphorus efficiency in a long-term wheat-rice cropping system in China. Tang, X.,Tang, X.,Ma, Y.,Shi, X.,Hao, X..

[8]Threshold of Soil Olsen-P in Greenhouses for Tomatoes and Cucumbers. Wu, Xue-Ping,Wu, Hui-Jun,Wang, Xiao-Bin,Li, Yin-Kun,Zhang, Yan-Cai,Li, Ruo-Nan,Wang, Li-Ying,Zhai, Cai-Xia,Chen, Li-Li,Wu, Xue-Ping,Wu, Hui-Jun,Wang, Xiao-Bin.

[9]Phosphorus Fractions of Soils Treated with Phosphate Rock and Monocalcium Phosphate after Ryegrass Growth. Chien, S. H.,Guo, H. C.,Guo, H. C.,Zhang, Q. C.,Wang, G. H..

[10]Application of Bio-Organic Fertilizer Significantly Affected Fungal Diversity of Soils. Luo, Jia,Ran, Wei,Hu, Jiang,Yang, Xingming,Xu, Yangchun,Shen, Qirong,Luo, Jia.

[11]Effect of Fermentation on Chemical Composition and Nutritional Quality of Extruded and Fermented Soya Products. Ojokoh, Anthony O.,Wei Yimin. 2011

[12]Differential responses of root and root hair traits of spring wheat genotypes to phosphorus deficiency in solution culture. Wang, Y. S.,Wang, Y. S.,Jensen, L. S.,Magid, J..

[13]Low-P solution culture can be used for screening root growth vigor in soil for high nutrient uptake of spring wheat varieties. Wang, Yaosheng,Wang, Yaosheng,Jensen, Lars Stoumann,Magid, Jakob. 2018

[14]Effect of nitrogen regimes on narrowing the magnitude of maize yield penalty caused by high temperature stress in North China Plain. Yan, Peng,Chen, Yuanquan,Dadouma, Adamou,Tao, Zhiqiang,Sui, Peng,Tao, Zhiqiang.

[15]Effect of Chemical Fertilizer Dose on Yield, Quality and Nutrient Utilization Rate of Sweet Pepper in Organic Substrate. Lv Xiao-Hui,Yang Ning,Wang Ke-An. 2013

[16]Mulberry nutrient management for silk production in Hubei Province of China. Chen, Fang,Wan, Kaiyuan,Lu, Jianwei,Zhang, Mingchu,Liu, Dongbi. 2009

[17]Effects of a biofertilizer from domestic waste on pak choi (Brassica chinensis) cultivation. Wu, Jinchao,Huang, Guangrong,Sun, Wanchun. 2012

[18]Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: II nutrient balances and soil fertility. Wang, Xiaobin,Hoogmoed, Willem B.,Cai, Dianxiong,Perdok, Udo D.,Oenema, Oene. 2007

[19]Fate of applied urea N-15 in a soil-maize system as affected by urease inhibitor and nitrification inhibitor. Zhang, L.,Wu, Z.,Jiang, Y.,Chen, L.,Song, Y.,Zhang, L.,Wang, L.,Xie, J.,Ma, X.. 2010

[20]ZEOLITE AS SLOW RELEASE FERTILIZER ON SPINACH YIELDS AND QUALITY IN A GREENHOUSE TEST. Li, Zhaohui,Li, Zhaohui,Zhang, Yingpeng,Li, Yan,Zhang, Yingpeng,Li, Yan. 2013

作者其他论文 更多>>