De novo sequencing and characterization of the Bradysia odoriphaga (Diptera: Sciaridae) larval transcriptome

文献类型: 外文期刊

第一作者: Chen, Haoliang

作者: Chen, Haoliang;Lin, Lulu;Xie, Minghui;Zhang, Guangling;Su, Weihua

作者机构:

关键词: Bradysia odoriphaga;De novo assembly;Functional annotation;Next generation sequencing;Transcriptome

期刊名称:COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS ( 影响因子:2.674; 五年影响因子:2.941 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The most serious pestilent threat to the Chinese chive, Allium tuberosum Rottle ex Spreng (Liliaceae) is the Bradysia odoriphaga Yang and Zhang. There is limited genetic research focused on B. odoriphaga, partially due to the lack of genomic resources. The advent of high-throughput sequencing technologies has enabled generation of genomic resources in a short time frame and at minimal costs. In this study, we performed, for the first time, de novo transcriptome sequencing of the B. odoriphaga. Here, 16,829 unigenes were assembled from the total reads, 12,024 of these unigenes were annotated in the NCBI NR protein database, and 9784 were annotated in the Swiss-Prot database. Of these annotated unigenes, 7903 and 5060 unigenes have been assigned to gene ontology categories and clusters of orthologous groups, respectively. Furthermore, 8647 unigenes were mapped to 257 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. We found that 408 unigenes were related to insecticide resistance and metabolism. In addition, 23,122 simple sequence repeats (SSRs) were identified in 11,009 unigenes, and 100 PCR primers of SSR loci were used to validate the assembly quality and polymorphisms. These results provide a good platform for further investigations into the insecticide resistance of B. odoriphaga. Finally, the SSRs identified in B. odoriphaga may be a useful genomic resource. (C) 2015 Elsevier Inc. All rights reserved.

分类号: Q75

  • 相关文献

[1]De novo transcriptomic analysis of cowpea (Vigna unguiculata L. Walp.) for genic SSR marker development. Chen, Honglin,Wang, Lixia,Liu, Xiaoyan,Hu, Liangliang,Wang, Suhua,Cheng, Xuzhen. 2017

[2]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[3]De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissue. Wu, Shuanghua,Lei, Jianjun,Chen, Guoju,Cao, Bihao,Chen, Changming,Chen, Hancai. 2017

[4]De Novo Transcriptome Sequencing of Oryza officinalis Wall ex Watt to Identify Disease-Resistance Genes. He, Bin,Gu, Yinghong,Cheng, Xiaojie,Wei, Changhe,Zhang, Yizheng,Tao, Xiang,Fu, Jian,Cheng, Zaiquan. 2015

[5]De novo assembly, gene annotation, and marker development of mulberry (Morus atropurpurea) transcriptome. Dai, Fanwei,Tang, Cuiming,Wang, Zhenjiang,Luo, Guoqing,He, Li,Yao, Liuhui. 2015

[6]De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). Li, Dejun,Deng, Zhi,Qin, Bi,Liu, Xianghong,Men, Zhonghua. 2012

[7]DE NOVO TRANSCRIPTOME ANALYSIS OF MULBERRY (MORUS L.) UNDER DROUGHT STRESS USING RNA-SEQ TECHNOLOGY. Wang, Heng,Tong, Wei,Feng, Li,Jiao, Qian,Long, Li,Fang, Rongjun,Zhao, Weiguo,Long, Li,Zhao, Weiguo,Fang, Rongjun,Zhao, Weiguo.

[8]De novo assembly and characterization of skin transcriptome using RNAseq in sheep (Ovis aries). Yue, Y. J.,Yang, B. H.,Yue, Y. J.,Liu, J. B.,Yang, M.,Han, J. L.,Guo, T. T.,Guo, J.,Feng, R. L.,Yang, B. H.. 2015

[9]Development and characterization of simple sequence repeat (SSR) markers based on a full-length cDNA library of Napier Grass (Pennisetum purpureum Schum). Wang, Jia,Hu, Zhongli,Diao, Ying,Chen, Zhitong,Huang, Yibing,Jin, Surong.

[10]RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Xia, Zhihui,Xu, Huimin,Zhai, Jinling,Luo, Hongli,He, Chaozu,Huang, Xi,Li, Dejun.

[11]In-depth transcriptome analysis of Coilia ectenes, an important fish resource in the Yangtze River: de novo assembly, gene annotation. Shen, Huaishun,Gu, Ruobo,Xu, Gangchun,Xu, Pao,Nie, Zijuan,Shen, Huaishun,Xu, Pao,Hu, Yacheng.

[12]CottonFGD: an integrated functional genomics database for cotton. Zhu, Tao,Liang, Chengzhen,Meng, Zhigang,Sun, Guoqing,Meng, Zhaoghong,Guo, Sandui,Zhang, Rui. 2017

[13]Identifying Genetic Differences Between Dongxiang Blue-Shelled and White Leghorn Chickens Using Sequencing Data. Zhao, Qing-bo,Sun, Hao,Zhang, Zhe,Wang, Qi-shan,Zhang, Xiang-zhe,Pan, Yu-chun,Liao, Rong-rong,Yang, Chang-suo,Wang, Qi-shan,Zhang, Xiang-zhe,Pan, Yu-chun. 2018

[14]PeanutDB: an integrated bioinformatics web portal for Arachis hypogaea transcriptomics. Shu, Changlong,Zhang, Jie,Schmidt, Emily,Li, Pei,Lenox, Douglas,Liu, Lin,Liang, Chun,Schmidt, Emily,Lenox, Douglas,Liang, Chun. 2012

[15]Large-scale sequencing of normalized full-length cDNA library of soybean seed at different developmental stages and analysis of the gene expression profiles based on ESTs. Sha, Ai-Hua,Li, Chen,Yan, Xiao-Hong,Shan, Zhi-Hui,Zhou, Xin-An,Jiang, Mu-Lan,Mao, Han,Chen, Bo,Wan, Xia,Wei, Wen-Hui.

[16]De Novo Transcriptome Assembly of Isatis indigotica at Reproductive Stages and Identification of Candidate Genes Associated with Flowering Pathways. Bai, Yu,Zhou, Ying,Tang, Xiaoqing,Wang, Yu,Wang, Fangquan,Yang, Jie. 2018

[17]Using Next-Generation Sequencing to Detect Differential Expression Genes in Bradysia odoriphaga after Exposure to Insecticides. Chen, Haoliang,Lin, Lulu,Ali, Farman,Xie, Minghui,Zhang, Guangling,Su, Weihua,Ali, Farman. 2017

[18]Effects of Heat Shock on the Bradysia odoriphaga (Diptera: Sciaridae). Cheng, Jiaxu,Su, Qi,Shi, Caihua,Yang, Yuting,Cheng, Jiaxu,Han, Haolin,Xie, Wen,Guo, Zhaojiang,Wu, Qingjun,Xu, Baoyun,Wang, Shaoli,Zhang, Youjun,Jiao, Xiaoguo.

[19]Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the chive gnat, Bradysia odoriphaga. Ma, Juan,Chen, Shulong,Ma, Juan,Moens, Maurice,De Clercq, Patrick,Moens, Maurice,Han, Richou. 2013

[20]Effects of Temperature on the Age-Stage, Two-Sex Life Table of Bradysia odoriphaga (Diptera: Sciaridae). Li, Wenxiang,Xie, Wen,Wu, Qingjun,Xu, Baoyun,Wang, Shaoli,Zhu, Xun,Zhang, Youjun,Li, Wenxiang,Wang, Shijun,Yang, Yuting.

作者其他论文 更多>>