Effects of high temperature at anthesis on spikelet fertility and grain weight in relation to floral positions within a panicle of rice (Oryza sativa L.)

文献类型: 外文期刊

第一作者: Cao, Zhen-Zhen

作者: Cao, Zhen-Zhen;Zhao, Qian;Wei, Ke-Su;Zaidi, Syed-Hassan-Raza;Zhou, Wei-Jun;Cheng, Fang-Min;Cao, Zhen-Zhen;Huang, Fu-Deng;Zhou, Wei-Jun;Cheng, Fang-Min

作者机构:

关键词: floral position;grain weight;high temperature;rice (Oryza sativa L;);spikelet fertility

期刊名称:CROP & PASTURE SCIENCE ( 影响因子:2.286; 五年影响因子:2.507 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Responses in spikelet fertility and grain weight to high temperature (HT) at anthesis and the relation to floral positions within a panicle were investigated using two HT-susceptible cultivars (Xieqingzao and Gang46) and two HT-tolerant cultivars (Qianjiang3 and Haunghuazan) under well-controlled climatic conditions. Results showed that effects of HT at anthesis were more adverse for spikelet fertility than for grain weight. The cultivar-dependent difference in spikelet fertility response to HT was mainly attributed to the extent of decrease in pollen viability for HT exposure. HT at anthesis impelled the flowering date of the florets on the middle and lower parts within a panicle, thereby resulting in shortened duration to floret-opening date and relatively concentrated floret-blossoming date. Change in spikelet fertility induced by HT was more notable than that caused by different grain positions, and the effect of HT on pollen viability was independent of the floret positions on the rachides within a panicle. Positional differences in spikelet fertility and grain weight under the HT regime were closely associated with the duration of HT exposure, in addition to differences in competing ability for supply of assimilates after successful fertilisation.

分类号: S

  • 相关文献

[1]Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza sativa L.). Guan, Y. S.,Liu, S. H.,Xu, J. L.,Wang, W. S.,Zhu, L. H.,Li, Z. K.,Guan, Y. S.,Serraj, R.,Liu, S. H.,Xu, J. L.,Ali, J.,Wang, W. S.,Venus, E.,Li, Z. K..

[2]Improvement of bacterial blight resistance of hybrid rice in China using the Xa23 gene derived from wild rice (Oryza rufipogon). Zhou, Yong-Li,Uzokwe, Veronica N. E.,Cheng, Li-Rui,Wang, Lei,Chen, Kai,Gao, Xiao-Qing,Sun, Yong,Zhu, Ling-Hua,Zhang, Qi,Xu, Jian-Long,Li, Zhi-Kang,Zhang, Cong-He,Chen, Jin-Jie,Ali, Jauhar,Li, Zhi-Kang.

[3]Rice transgene flow: its patterns, model and risk management. Jia, Shirong,Pei, Xinwu,Wang, Zhixing,Yuan, Qianhua,Wang, Feng,Hu, Ning,Yao, Kemin.

[4]Activation tagging, an efficient tool for functional analysis of the rice genome. Wan, Shuyan,Wu, Jinxia,Zhang, Zhiguo,Sun, Xuehui,Lv, Yaci,Gao, Ci,Ning, Yingda,Ma, Jun,Guo, Yupeng,Zhang, Qian,Zheng, Xia,Lu, Tiegang,Lv, Yaci,Gao, Ci,Ning, Yingda,Zhang, Caiying,Ma, Zhiying.

[5]Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death. Lin, D.,Jiang, Q.,Zheng, K.,Chen, S.,Zhou, H.,Gong, X.,Dong, Y.,Chen, S.,Zhou, H.,Teng, S.,Xu, J..

[6]Identification and Comparative Analysis of Premature Senescence Leaf Mutants in Rice (Oryza sativa L.). He, Yan,Li, Liangjian,Zhang, Zhihong,Wu, Jian-Li. 2018

[7]OsMOGS is required for N-glycan formation and auxin-mediated root development in rice ( Oryza sativa L.). Wang, SuiKang,Xu, YanXia,Zhang, SaiNa,Jiang, De An,Qi, YanHua,Li, ZhiLan,Lim, Jae-Min,Lim, Jae-Min,Lee, Kyun Oh,Lee, Kyun Oh,Li, ChuanYou,Qian, Qian. 2014

[8]The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryzasativa L.). Yu, ChenLiang,Sun, ChenDong,Wang, Suikang,Liu, Fang,Liu, Yan,Chen, YunLong,Jiang, De An,Qi, YanHua,Shen, Chenjia,Li, Chuanyou,Qian, Qian,Aryal, Bibek,Geisler, Markus.

[9]Effects of Low Temperature Stress on Spikelet-Related Parameters during Anthesis in Indica-Japonica Hybrid Rice. Zeng, Yanhua,Pan, Xiaohua,Zeng, Yanhua,Zhang, Yuping,Xiang, Jing,Zhu, Defeng,Uphoff, Norman T.. 2017

[10]Pollen Semi-Sterility1 Encodes a Kinesin-1-Like Protein Important for Male Meiosis, Anther Dehiscence, and Fertility in Rice. Zhou, Shirong,Wang, Yang,Li, Wanchang,Zhao, Zhigang,Ren, Yulong,Wang, Yong,Jiang, Ling,Liu, Linglong,Wan, Jianmin,Zhou, Shirong,Gu, Suhai,Lin, Qibing,Wang, Dan,Su, Ning,Zhang, Xin,Cheng, Zhijun,Lei, Cailin,Wang, Jiulin,Guo, Xiuping,Wu, Fuqing,Wang, Haiyang,Wan, Jianmin,Ikehashi, Hiroshi.

[11]OsEF3, a homologous gene of Arabidopsis ELF3, has pleiotropic effects in rice. Fu, C.,Yang, X. O.,Chen, W.,Ma, Y.,Hu, J.,Li, S.,Fu, C.,Yang, X. O.,Chen, W.,Ma, Y.,Hu, J.,Li, S.,Fu, C.,Chen, X.. 2009

[12]Association Mapping of Grain Weight, Length and Width in Barley (Hordeum vulgare) Breeding Germplasm. Liu, X.,Ma, L.,Feng, Z.,Lai, Yunping,Yu, Y.,Wan, H.,Zhang, Z.,Wang, L.,Leng, Y.,Yang, W.,Ma, L.. 2017

[13]TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. Zhang, Lei,Zhao, Yong-Liang,Gao, Li-Feng,Zhao, Guang-Yao,Zhou, Rong-Hua,Jia, Ji-Zeng,Zhang, Lei,Zhang, Bao-Shi.

[14]Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice. Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Yu, Si-Bin,Zhang, Hong-Wei,Yu, Si-Bin. 2016

[15]Nighttime Warming Will Increase Winter Wheat Yield Through Improving Plant Development and Grain Growth in North China. Chen, Jin,Tian, Yunlu,Zhang, Xin,Zhang, Weijian,Zhang, Xin,Zheng, Chengyan,Song, Zhenwei,Deng, Aixin,Zhang, Weijian. 2014

[16]Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Wu, Xinyi,Cheng, Ruiru,Xue, Shulin,Kong, Zhongxin,Wan, Hongshen,Li, Guoqiang,Huang, Yulong,Jia, Haiyan,Zhang, Lixia,Ma, Zhengqiang,Jia, Jizeng. 2014

[17]Dissection of qTGW1.2 to three QTLs for grain weight and grain size in rice (Oryza sativa L.). Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun,Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun.

[18]Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2. Qin, Lin,Hao, Chenyang,Hou, Jian,Wang, Yuquan,Li, Tian,Wang, Lanfen,Zhang, Xueyong,Qin, Lin,Ma, Zhengqiang,Qin, Lin,Ma, Zhengqiang. 2014

[19]Genetic Effects of Background-Independent Loci for Grain Weight and Shape Identified using Advanced Reciprocal Introgression Lines from Lemont x Teqing in Rice. Zheng, T. Q.,Zhu, L. H.,Sun, Y.,Zhai, H. Q.,Xu, Z. J.,Li, Z. K.,Wang, Y.,Xu, Z. J.,Ali, A. J.,Li, Z. K.,Mei, H. W..

[20]OsAGSW1, an ABC1-like kinase gene, is involved in the regulation of grain size and weight in rice. Li, Tao,Jiang, Jieming,Zhang, Shengchun,Shu, Haoran,Wang, Yaqin,Lai, Jianbin,Du, Jinju,Yang, Chengwei,Li, Tao.

作者其他论文 更多>>