Estimating wheat yield and quality by coupling the DSSAT-CERES model and proximal remote sensing

文献类型: 外文期刊

第一作者: Li, Zhenhai

作者: Li, Zhenhai;Jin, Xiuliang;Zhao, Chunjiang;Xu, Xingang;Yang, Guijun;Li, Cunjun;Shen, Jiaxiao;Li, Zhenhai;Jin, Xiuliang;Zhao, Chunjiang;Xu, Xingang;Yang, Guijun;Li, Cunjun;Shen, Jiaxiao;Zhao, Chunjiang;Zhao, Chunjiang;Li, Zhenhai;Wang, Jihua;Wang, Jihua;Shen, Jiaxiao

作者机构:

关键词: Hyperspectral;DSSAT;Winter wheat;Particle swarm optimization;Grain yield;Grain protein content

期刊名称:EUROPEAN JOURNAL OF AGRONOMY ( 影响因子:5.124; 五年影响因子:5.567 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Coupling remote sensing data with a crop growth model has become an effective tool for estimating grain yields and assessing grain quality. In this study, a data assimilation approach using a particle swarm optimization algorithm was developed to integrate remotely sensed data into the DSSAT-CERES model for estimating the grain yield and protein content of winter wheat. Our results showed that the normalized difference red edge index (NDRE) produced the most accurate selection of spectral indices for estimating canopy N accumulation (CNA), with R-2 and RMSE values of 0.663 and 34.05 kg ha(-1), respectively. A data assimilation method (R-2 = 0.729 and RMSE = 32.02 kg ha(-1)) performed better than the spectral indices method for estimation of canopy N accumulation. Simulation of drain yield by the data assimilation method agreed well with the measured grain yield, with R-2 and RMSE values of 0.711 and 0.63 t ha(-1), respectively. Estimating grain protein content by gluten type could improve the estimation accuracy, with R-2 and RMSE of 0.519 and 1.53%, respectively. Our study showed that estimating wheat grain yield, and especially quality, could be successfully accomplished by assimilating remotely sensed data into the DSSAT-CERES model. (C) 2015 Elsevier B.V. All rights reserved.

分类号: S3

  • 相关文献

[1]Assimilation of Two Variables Derived from Hyperspectral Data into the DSSAT-CERES Model for Grain Yield and Quality Estimation. Li, Zhenhai,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Li, Zhenhai,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Li, Zhenhai,Wang, Jihua,Wang, Jihua,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Jin, Xiuliang. 2015

[2]Estimation of Winter Wheat Biomass and Yield by Combining the AquaCrop Model and Field Hyperspectral Data. Jin, Xiuliang,Kumar, Lalit,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Wang, Jihua. 2016

[3]Estimation of Grain Protein Content in Winter Wheat by Using Three Methods with Hyperspectral Data. Xiu-liang Jin,Wang, Ji-hua,Xiu-liang Jin,Xin-gang Xu,Hai-kuan Feng,Xiao-yu Song,Qian Wang,Xiu-liang Jin,Xin-gang Xu,Hai-kuan Feng,Xiao-yu Song,Qian Wang,Xiu-liang Jin,Wang, Ji-hua,Guo, Wen-shan. 2014

[4]EFFECTS OF REGULATED DEFICIT IRRIGATION ON GRAIN YIELD AND QUALITY TRAITS IN WINTER WHEAT. Meng, Zhaojiang,Duan, Aiwang,Gao, Yao,Wang, Xiaosen,Shen, Xiaojun,Dassanayake, Kithsiri Bandara,Chen, Deli.

[5]Estimating Winter Wheat Leaf Area Index From Ground and Hyperspectral Observations Using Vegetation Indices. Xie, Qiaoyun,Huang, Wenjiang,Zhang, Bing,Dong, Yingying,Xie, Qiaoyun,Chen, Pengfei,Song, Xiaoyu,Pascucci, Simone,Pignatti, Stefano,Laneve, Giovanni. 2016

[6]Evaluating Multispectral and Hyperspectral Satellite Remote Sensing Data for Estimating Winter Wheat Growth Parameters at Regional Scale in the North China Plain. Koppe, Wolfgang,Gnyp, Martin L.,Bareth, Georg,Koppe, Wolfgang,Chen, Xinping,Zhang, Fusuo,Li, Fei,Miao, Yuxin,Miao, Yuxin. 2010

[7]Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the North China Plain. Bareth, Georg,Lenz-Wiedemann, Victoria I. S.,Koppe, Wolfgang,Gnyp, Martin L.,Bareth, Georg,Li, Fei,Lenz-Wiedemann, Victoria I. S.,Chen, Xinping,Gnyp, Martin L.,Li, Fei,Miao, Yuxin,Jia, Liangliang,Koppe, Wolfgang,Hennig, Simon D.,Jia, Liangliang,Chen, Xinping,Zhang, Fusuo,Laudien, Rainer. 2014

[8]Research on Universality of Least Squares Support Vector Machine Method for Estimating Leaf Area Index of Winter Wheat. Xie Qiao-yun,Huang Wen-jiang,Peng Dai-liang,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Song Xiao-yu,Yang Gui-jun. 2014

[9]Morphological and yield responses of winter wheat (Triticum aestivum L.) to raised bed planting in Northern China. Wang, Fahong,Kong, Ling'an,Li, Shengdong,Si, Jisheng,Feng, Bo,Zhang, Bin,Wang, Fahong,Sayre, Ken. 2011

[10]Nitrogen use by winter wheat and changes in soil nitrate nitrogen levels with supplemental irrigation based on measurement of moisture content in various soil layers. Guo, Zengjiang,Zhang, Yongli,Shi, Yu,Yu, Zhenwen,Zhao, Junye.

[11]Effects of pre-Sowing Irrigation on Crop Water Consumption, Grain Yield and Water Productivity of Winter Wheat in the North China Plain. Gao, Yang,Shen, Xiaojun,Li, Xinqiang,Meng, Zhaojiang,Sun, Jingsheng,Duan, Aiwang.

[12]Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China. Zhan, Ai,Zou, Chunqin,Cui, Zhenling,Chen, Xinping,Ye, Youliang,Liu, Zhaohui.

[13]Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Amin, Asad,Nasim, Wajid,Mubeen, Muhammad,Nadeem, Muhammad,Hammad, Hafiz Mohkum,Sultana, Syeda Refat,Akram, Muhammad,Nasim, Wajid,Nasim, Wajid,Ali, Liaqat,Rehman, M. Habib ur,Jabran, Khawar,Rehman, M. Habib ur,Ahmad, Shakeel,Awais, Muhammad,Rasool, Atta,Fahad, Shah,Khan, Aziz,Saud, Shah,Shah, Adnan Noor,Ihsan, Zahid,Alghabar, Fahad,Ali, Shahzad,Bajwa, Ali Ahsan,Hakeem, Khalid Rehman,Ameen, Asif,Amanullah,Rehman, Hafeez Ur,Jatoi, Ghulam Hussain,Islam, Faisal,Islam, Faisal,Ata-Ul-Karim, Syed Tahir,Rehmani, Muhammad Ishaq Asif,Hussain, Sajid,Razaq, Muhammad,Fathi, Amin.

[14]Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production. Liu, H. L.,Yang, J. Y.,Drury, C. F.,Reynolds, W. D.,Tan, C. S.,Liu, H. L.,Bai, Y. L.,He, P.,Jin, J.,He, P.,Jin, J.,Hoogenboom, G..

[15]Contribution of Drought to Potential Crop Yield Reduction in a Wheat-Maize Rotation Region in the North China Plain. Hu Ya-nan,Xu Yin-long,Pan Jie,Hu Ya-nan,Tang Hua-jun,Liu Ying-jie. 2014

[16]Optimizing Parameters of CSM-CERES-Maize Model to Improve Simulation Performance of Maize Growth and Nitrogen Uptake in Northeast China. Liu Hai-long,Yang Jing-yi,Drury, Craig F.,Yang Xue-ming,Liu Hai-long,Zhu Ye-ping,Liu Hai-long,He Ping,Bai You-lu,Jin Ji-yun,Li Wen-juan,Xie Jia-gui,Yang Jing-min,Hoogenboom, Gerrit. 2012

[17]Using the DSSAT model to simulate wheat yield and soil organic carbon under a wheat-maize cropping system in the North China Plain. Liu Hai-long,Zhu Ye-ping,Liu Sheng-ping,Li Shi-juan,Liu Hong-bin,Lei Qiu-liang,Zhai Li-mei,Wang Hong-yuan,Zhang Ji-zong,Zhang Jing-suo,Liu Xiao-xia. 2017

[18]Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat. Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi. 2016

[19]GENETIC ANALYSIS OF THE GRAIN PROTEIN CONTENT IN SOFT RED WINTER WHEAT (Triticum aestivum L.). Yao, Jinbao,Ma, Hongxiang,Yang, Xueming,Zhou, Miaoping,Yang, Dan. 2014

[20]Estimating Wheat Grain Protein Content Using Multi-Temporal Remote Sensing Data Based on Partial Least Squares Regression. Li Cun-jun,Wang Ji-hua,Wang Qian,Wang Da-cheng,Song Xiao-yu,Wang Yan,Huang Wen-jiang,Li Cun-jun,Wang Ji-hua,Huang Wen-jiang. 2012

作者其他论文 更多>>