Molecular diversity and evolution of defensins in the manila clam Ruditapes philippinarum

文献类型: 外文期刊

第一作者: Wang, Qing

作者: Wang, Qing;Yang, Dinglong;Yu, Qian;Li, Fei;Cong, Ming;Ji, Chenglong;Wu, Huifeng;Zhao, Jianmin;Zhang, Linbao;Yang, Dinglong;Yu, Qian

作者机构:

关键词: Defensin;Manila clam;Diversity;Positive selection

期刊名称:FISH & SHELLFISH IMMUNOLOGY ( 影响因子:4.581; 五年影响因子:4.851 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Four types of defensins were identified in Manila clam and designated as Rpdef1, Rpdef2, Rpdef3 and Rpdef4, which encoded a polypeptide of 49, 46, 45 and 42 amino acids, respectively. Sequence alignments indicated that Rpdef1 shared 46.9% identity with Rpdef2, 40.8% with Rpdef3, and 34.7% with Rpdef4. Analysis of transcript polymorphism showed that Rpdef3 accounted for about 60% frequency of Rpdefs occurrence in clams from three geographic origins (Dalian, Qingdao and Hangzhou). By quantitative real-time RT-PCR (qRT-PCR) analysis, the transcripts of Rpdefs were mainly detected in hemocytes and they responded sensitively to bacterial challenge in hemocytes. Evolutionary analysis indicated that all Rpdefs were under positive selection with positively selected basic amino acid residues detected in the C-terminal regions, which perhaps have a functional relevance by modifying the charge distribution of Rpdefs. The results also showed some lineages with dN/dS > 1, suggesting positive selection pressures existed in some lineages of phylogeny tree constructed by mollusk defensins. Overall, our results suggest that Rpdefs perhaps played important roles in host defense and positive selection is the major driving force in generating high diversity of defensins in the Manila clam. (C) 2015 Elsevier Ltd. All rights reserved.

分类号: S9

  • 相关文献

[1]Bacterial expression of a Trichosanthes kirilowii defensin (TDEF1) and its antifungal activity on Fusarium oxysporum. Jian Gui-Liang,Zhang Ying-Tao,Ai Tie-Min.

[2]A defensin from clam Venerupis philippinarum: Molecular characterization, localization, antibacterial activity, and mechanism of action. Zhang, Linbao,Yang, Dinglong,Wang, Qing,Wu, Huifeng,Pei, Dong,Cong, Ming,Li, Fei,Ji, Chenglong,Zhao, Jianmin,Zhang, Linbao,Yang, Dinglong,Wang, Qing,Wu, Huifeng,Pei, Dong,Cong, Ming,Li, Fei,Ji, Chenglong,Zhao, Jianmin,Zhang, Linbao,Yang, Dinglong,Yuan, Zeyi.

[3]Overexpression of a Broccoli Defensin Gene BoDFN Enhances Downy Mildew Resistance. Jiang Ming,He Cai-ming,Miao Li-xiang,Zhang Yu-chao. 2012

[4]Isolation, characterization and phylogenetic analysis of the resistance gene analogues (RGAs) in banana (Musa spp.). Pei, Xinwu,Li, Shengjun,Jiang, Ying,Zhang, Yongqiang,Wang, Zhixing,Jia, Shirong.

[5]Selective modes determine evolutionary rates, gene compactness and expression patterns in Brassica. Liu, Jing,Du, Jianchang,Zhang, Jiefu,Du, Jianchang,Liu, Shengyi,Du, Jianchang. 2017

[6]Mannose selection system used for cucumber transformation. He, Zhengquan,Duan, ZhenZhen,Liang, Wei,Chen, Faju,Yao, Wei,Liang, Hongwei,Yue, Chaoyin,Sun, Zongxiu,Chen, Fan,Dai, Jianwu. 2006

[7]Gene duplication and an accelerated evolutionary rate in 11S globulin genes are associated with higher protein synthesis in dicots as compared to monocots. Li, Chun,Li, Meng,Zhang, Yuan-Ming,Li, Chun,Dunwell, Jim M.. 2012

[8]De novo assembly and characterization of the Hucho taimen transcriptome. Tong, Guang-Xiang,Xu, Wei,Zhang, Yong-Quan,Zhang, Qing-Yu,Yin, Jia-Sheng,Kuang, You-Yi. 2018

[9]The impact of positive selection and mutation in prevalence of representative O/Mya-98 foot and mouth disease strains during 2009-2010. Kuang, Wendong,Bai, Xingwen,Qi, Guocai,Hao, Xiaofang,Li, Pinghua,Lu, Zengjun,Bao, Huifang,Sun, Pu,Wu, Lei,Liu, Zaixin. 2012

[10]Evidence for positive selection in Ser/Thr protein kinases (STKs) genes of Trichodesmium erythraeum. Liang, Chengwei,Zhang, Xiaowen. 2009

[11]An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Hofinger, Bernhard J.,Bass, Chris G.,Baldwin, Thomas,Hammond-Kosack, Kim E.,Kanyuka, Kostya,Russell, Joanne R.,Hedley, Peter E.,Macaulay, Malcolm,Waugh, Robbie,Dos Reis, Mario,Li, Yidan.

[12]Transcriptome analysis revealed positive selection of immune-related genes in tilapia. Xiao, Jun,Zhong, Huan,Luo, Yongju,Gan, Xi,Zhou, Yi,Liu, Zhen,Zhou, Yi,Yu, Fan.

[13]Independent Losses of Function in a Polyphenol Oxidase in Rice: Differentiation in Grain Discoloration between Subspecies and the Role of Positive Selection under Domestication. Tang, Tian,Wu, Chung-I,Shi, Suhua,Yu, Yanchun,Wang, Yonghong,Li, Jiayang,Yu, Yanchun,Wang, Yonghong,Li, Jiayang,Qian, Qian,Yan, Meixian,Zeng, Dali,Han, Bin,Han, Bin,Wu, Chung-I,Wu, Chung-I.

[14]Transcriptome Sequencing of Lima Bean (Phaseolus lunatus) to Identify Putative Positive Selection in Phaseolus and Legumes. Cao, Depan,Liu, Yang,Yang, Ting,Wang, Guirong. 2015

[15]Population size may shape the accumulation of functional mutations following domestication. Chen, Jianhai,Ni, Pan,Li, Xinyun,Zhao, Shuhong,Chen, Jianhai,Ni, Pan,Li, Xinyun,Zhao, Shuhong,Han, Jianlin,Han, Jianlin,Jakovlic, Ivan,Zhang, Chengjun. 2018

[16]A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds. Yang, Songbai,Li, Kui,Tang, Zhonglin,Yang, Songbai,Li, Xiuling,Fan, Bin,Yang, Songbai,Li, Xiuling,Fan, Bin. 2014

[17]Evolution and molecular epidemiology of foot-and-mouth disease virus in China. Bai XingWen,Li PingHua,Bao HuiFang,Liu ZaiXin,Li Dong,Lu ZengJun,Cao YiMei,Shang YouJun,Shao JunJun,Chang HuiYun,Luo JianXun,Liu XiangTao. 2011

[18]Evolution, gene expression profiling and 3D modeling of CSLD proteins in cotton. Li, Yanpeng,Yang, Tiegang,Dai, Dandan,Hu, Ying,Guo, Xiaoyang,Guo, Hongxia,Li, Yanpeng,Yang, Tiegang,Dai, Dandan,Hu, Ying,Guo, Xiaoyang,Guo, Hongxia. 2017

[19]Genome-wide identification and evolutionary analysis of positively selected miRNA genes in domesticated rice. Liu, Qingpo,Wang, Hong,Hu, Haichao,Liu, Qingpo,Wang, Hong,Hu, Haichao,Zhang, Hengmu.

[20]Phosphomannose-isomerase (pmi) gene as a selectable marker for rice transformation via Agrobacterium. He, ZQ,Fu, YP,Si, HM,Hu, GC,Zhang, SH,Yu, YH,Sun, ZX.

作者其他论文 更多>>