Two alternative splicing variants of maize HKT1;1 confer salt tolerance in transgenic tobacco plants

文献类型: 外文期刊

第一作者: Ren, Zhenjing

作者: Ren, Zhenjing;Kang, Dan;Fan, Kaijian;Wang, Cuiyun;Wang, Guoying;Liu, Yunjun;Liu, Yan

作者机构:

关键词: Maize;HKT;Alternative splicing;Salt tolerance;Transgenic plant

期刊名称:PLANT CELL TISSUE AND ORGAN CULTURE ( 影响因子:2.711; 五年影响因子:2.73 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The high-affinity potassium transporter (HKT) genes have crucial roles in the regulation of sodium and potassium transportation in many species, however little is known about maize HKT genes. In this study, we obtained two alternative splicing transcripts of ZmHKT1;1 gene. One was named as ZmHKT1;1a which has the intact coding sequence, and the other was named as ZmHKT1;1b which has a deficiency of the third exon and a retention of the second intron. The phylogenic tree analysis showed that both translation products of ZmHKT1;1a and ZmHKT1;1b belong to group I HKT proteins which prefer for Na+ transport than other cations. ZmHKT1;1a and ZmHKT1;1b showed different response to stress treatment in maize. Overexpressing ZmHKT1;1a or ZmHKT1;1b in transgenic tobacco plants conferred high salt tolerance by increasing root length and fresh weight of plants. When treated with high concentration of salt, transgenic tobacco plants manifested a trend of reduced Na+ content and increased K+ content in both shoot and root, suggesting that ZmHKT1;1 may involve in Na+ unloading and indirectly affect other transporter activity. It was also found that overexpression of ZmHKT1;1a and ZmHKT1;1b caused different expression of stress-related genes. The results in this study indicate that two alternative splicing variants of ZmHKT1;1 might be useful for the development of salt-tolerant transgenic crops.

分类号: Q942

  • 相关文献

[1]Expression of yeast Hem1 gene controlled by Arabidopsis HemA1 promoter improves salt tolerance in Arabidopsis plants. Zhang, Zhi-Ping,Yao, Quan-Hong,Wang, Liang-Ju,Yao, Quan-Hong.

[2]A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Lu, Min,Ying, Sheng,Zhang, Deng-Feng,Shi, Yun-Su,Song, Yan-Chun,Wang, Tian-Yu,Li, Yu. 2012

[3]Developing insect resistance with fusion gene transformation of chitinase and scorpion toxin gene in maize (Zea mays L). Liu, Ming,Wang, Jingxue,Hao, Yaoshan,Sun, Yi.

[4]Transgenic maize plants expressing a fungal phytase gene. Chen, Rumei,Chen, Ping,Yang, Wenzhu,Ma, Qianli,Fan, Yunliu,Xue, Guangxing,Yao, Bin,Zhao, Zuoyu,Tarczynski, Mitchell C.,Shi, Jinrui. 2008

[5]Identification of genes alternatively spliced in developing maize endosperm. Xie, S.,Zhang, J.,Xie, S.,Zhang, X.,Zhou, Z.,Li, X.,Weng, J.,Huang, Y.. 2018

[6]Comparative Proteomics of Contrasting Maize, Genotypes Provides Insights into Salt-Stress Tolerance Mechanisms. Luo, Meijie,Zhao, Yanxin,Wang, Yuandong,Shi, Zi,Zhang, Panpan,Zhang, Yunxia,Song, Wei,Zhao, Jiuran. 2018

[7]Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Wang, Maoyan,Gu, Dan,Liu, Tingsong,Wang, Zhaoqiang,Guo, Xiying,Hou, Wei,Bai, Yunfeng,Chen, Xiaoping,Wang, Guoying.

[8]Cloning and characterization of a novel CBL-interacting protein kinase from maize. Zheng, Jun,Wang, Guoying,Zheng, Jun,Wang, Guoying,Zhao, Jinfeng,Zhao, Jinfeng,Sun, Zhenfei,Guo, Xiying,Dong, Zhigang,Huai, Junling,Gou, Mingyue,He, Junguang,Jin, Yongsheng,Wang, Jianhua,Zhao, Jinfeng,Sun, Zhenfei,Guo, Xiying,Dong, Zhigang,Huai, Junling,Gou, Mingyue,He, Junguang,Jin, Yongsheng,Wang, Jianhua.

[9]Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. Zhao, Yanxin,Zhang, Ruyang,Xing, Jinfeng,Duan, Minxiao,Li, Jingna,Wang, Naishun,Wang, Wenguang,Zhang, Shasha,Zhang, Huasheng,Shi, Zi,Song, Wei,Zhao, Jiuran,Chen, Zhihui. 2017

[10]Effects of Bt transgenic cotton lines on the cotton bollworm parasitoid Microplitis mediator in the laboratory. Liu, XX,Zhang, QW,Zhao, JZ,Li, HC,Xu, BL,Ma, XM. 2005

[11]Genetic transformation of watercress with a gene encoding for betaine-aldehyde dehydrogenase (BADH). Li, YX,Chang, FQ,Du, LQ,Guo, BH,Li, HJ,Zhang, JS,Chen, SY,Zhu, ZQ. 2000

[12]Over-expression of Oryza sativa Xrn4 confers plant resistance to virus infection. Jiang, Shanshan,Jiang, Liangliang,Jiang, Shanshan,Yang, Jian,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei,Yang, Jian,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei. 2018

[13]Expression of rabbit defensin NP-1 gene in transgenic tobacco plants and its activity against bacterial wilt. Peng, YF,Cao, GC,Ma, JS,Chen, CX,Zhang, LM,Li, WB,Sun, YR. 1998

[14]Arabidopsis LOS5 Gene Enhances Chilling and Salt Stress Tolerance in Cucumber. Liu Li-ying,Duan Liu-sheng,Zhang Jia-chang,Zhang Xiao-lan,Zhang Zhen-xian,Ren Hua-zhong,Mi Guo-quan. 2013

[15]Efficient Sugarcane Transformation via bar Gene Selection. Wang, W. Z.,Yang, B. P.,Feng, C. L.,Wang, J. G.,Xiong, G. R.,Zhao, T. T.,Zhang, S. Z.. 2017

[16]NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Shao, Hongbo,Shao, Hongbo,Shao, Hongbo,Wang, Hongyan,Tang, Xiaoli,Wang, Hongyan. 2015

[17]Detection of unintended effects in genetically modified herbicide-tolerant (GMHT) rice in comparison with non-target phenotypic characteristics. Xiao, Guoying,Jiang, Xianbin,Jiang, Xianbin. 2010

[18]Improved phosphorus acquisition by tobacco through transgenic expression of mitochondrial malate dehydrogenase from Penicillium oxalicum. Lu, Jun,Gao, Xiaorong,Yi, Jun,An, Lijia,Dong, Zhimin. 2012

[19]Efficacy of transgenic Bt cotton for resistance to the Asian corn borer (Lepidoptera : Crambidae). He, KL,Wang, ZY,Bai, SX,Zheng, L,Wang, YB,Cui, HY. 2006

[20]Influences of the disease resistance conferred by the individual transgenes, Pi-d2, Pi-d3 and Xa21, on the transgenic rice plants in yield and grain quality. Hao, Z. N.,Wang, L. P.,Tao, R. X.,Wang, J.,Wang, J.. 2009

作者其他论文 更多>>