Contrasted effects of biochar on maize growth and N use efficiency depending on soil conditions

文献类型: 外文期刊

第一作者: Peng, Xinhua

作者: Peng, Xinhua;Zhu, Qiaohong;Huang, Taiqing

作者机构:

关键词: biochar;maize;N use efficiency;soil fertility

期刊名称:INTERNATIONAL AGROPHYSICS ( 影响因子:2.317; 五年影响因子:2.244 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Biochar amendment may improve crop growth through its nutrients and indirect fertility. However, this improvement varies in a wide range of biochars, crops, and soils. Our objectives were to determine the response of crop growth to biochar amendment and to assess the N use efficiency relative to the biochar and the soil types. In this pot experiment, we investigated five typical agricultural soils in China amended with two biochars. Four treatments were designed: the soil itself as a control, the soil amended with 1% biochar, the soil with fertilizer NPK, and the soil with added biochar and fertilizer. Biochar amendment increased the maize biomass and the N use efficiency in the red soil (p<0.05) but not in the other four soils (p>0.05). In the red soil, the biomass under biochar+NPK was 2.67-3.49 times higher than that of only NPK, and 1.48-1.62 times higher than that of only biochar amendment, 21-36 and 35-42% of which were contributed from biochar fertility and indirect fertility, respectively. This study indicates that biochar amendment is very plausible for the red soil but has a minor or even negative effect on the other four soils in China.

分类号: S1

  • 相关文献

[1]Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: II nutrient balances and soil fertility. Wang, Xiaobin,Hoogmoed, Willem B.,Cai, Dianxiong,Perdok, Udo D.,Oenema, Oene. 2007

[2]Improvement to Maize Growth Caused by Biochars Derived From Six Feedstocks Prepared at Three Different Temperatures. Luo Yu,Zhao Li-xin,Meng Hai-bo,Jiao Yu-jie,Zhao Xiao-rong,Li Gui-tong,Luo Yu. 2014

[3]The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Xu, Ping,Sun, Cai-Xia,Ye, Xue-Zhu,Xiao, Wen-Dan,Zhang, Qi,Wang, Qiang.

[4]Progress in Significant Soil Science Fields of China over the Last Three Decades: A Review. Zhao Qi-Guo,Yan Xiao-Yuan,Zhang Gan-Lin,Cai Zu-Cong,He Ji-Zheng,Zhang Bin.

[5]Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Zhang, Dongmei,Li, Weijiang,Xin, Chengsong,Tang, Wei,Eneji, A. Egrinya,Dong, Hezhong,Eneji, A. Egrinya. 2012

[6]Effect of poly (gamma-glutamic acid) on wheat productivity, nitrogen use efficiency and soil microbes. Xu, Z.,Wan, Ch.,Feng, X.,Xu, H.,Xu, X.. 2013

[7]Comparisons of yield performance and nitrogen response between hybrid and inbred rice under different ecological conditions in southern China. Xu Fu-xian,Xiong Hong,Jiang Peng,Xie Xiao-bing,Huang Min,Zhou Xue-feng,Zhang Rui-chun,Chen Jia-na,Wu Dan-dan,Xia Bing,Zou Ying-bin,Zou Ying-bin. 2015

[8]Characterizing N uptake and use efficiency in rice as influenced by environments. Xie, Xiaobing,Huang, Min,Zhou, Xuefeng,Zhang, Ruichun,Chen, Jiana,Wu, Dandan,Xia, Bing,Zou, Yingbin,Jiang, Peng,Xiong, Hong,Xu, Fuxian. 2016

[9]Fate of applied urea N-15 in a soil-maize system as affected by urease inhibitor and nitrification inhibitor. Zhang, L.,Wu, Z.,Jiang, Y.,Chen, L.,Song, Y.,Zhang, L.,Wang, L.,Xie, J.,Ma, X.. 2010

[10]Responses of Agronomic Benefit and Soil Quality to Better Management of Nitrogen Fertilizer Application in Greenhouse Vegetable Land. Zhang Jian-Feng,Yang Jun-Cheng,Song Xiao-Zong,Liu Zhao-Hui,Jiang Li-Hua.

[11]Excessive nitrogen application decreases grain yield and increases nitrogen loss in a wheat-soil system. Wang, Dong,Xu, Zhenzhu,Zhao, Junye,Wang, Yuefu,Yu, Zhenwen,Xu, Zhenzhu,Zhao, Junye,Wang, Yuefu. 2011

[12]Nitrogen release dynamics and transformation of slow release fertiliser products and their effects on tea yield and quality. Han, Wen-Yan,Ma, Li-Feng,Shi, Yuan-Zhi,Ruan, Jian-Yun,Kemmitt, Sarah J.. 2008

[13]On-farm evaluation of an in-season nitrogen management strategy based on soil N-min test. Cui, Zhenling,Zhang, Fusuo,Chen, Xinping,Miao, Yuxin,Li, Junliang,Shi, Liwei,Xu, Jiufei,Ye, Youliang,Liu, Chunsheng,Yang, Zhiping,Zhang, Qiang,Huang, Shaomin. 2008

[14]Integrated crop-N system management to establish high wheat yield population. Lu, Dianjun,Lu, Feifei,Cui, Zhenling,Zou, Chunqin,Chen, Xinping,Lu, Dianjun,Yue, Shanchao,Liu, Zhaohui.

[15]Mixture of controlled release and normal urea to optimize nitrogen management for high-yielding (> 15 Mg ha(-1)) maize. Guo, Jiameng,Chen, Xinping,Wang, Yonghong,Blaylock, Alan D..

[16]Nitrogen use efficiency of cotton (Gossypium hirsutum L.) as influenced by wheat-cotton cropping systems. Du, Xiangbei,Chen, Binglin,Zhang, Yuxiao,Zhao, Wenqing,Shen, Tianyao,Zhou, Zhiguo,Meng, Yali,Du, Xiangbei.

[17]Crop yields, internal nutrient efficiency, and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation. Liu, XJ,Jiang, RF,Zhang, FS,Lu, SH,Zeng, XZ,Christie, P. 2005

[18]Effects of planting pattern on growth and yield and economic benefits of cotton in a wheat-cotton double cropping system versus monoculture cotton. Lu Feng,Cao, Weixing,Guoping Wang,Yingchun Han,Yabing Li,Yan Zhu,Zhiguo Zhou,Weixing Cao.

[19]Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management. Xue, Lihong,Yu, Yingliang,Yang, Linzhang. 2014

[20]Assessing the Soil Fertility using Landsat TM Imagery and Geospatial Statistical Analysis. Zhao, Jinling,Wang, Dacheng,Zhang, Dongyan,Luo, Juhua,Huang, Wenjiang. 2012

作者其他论文 更多>>