Characterization of the secretome of Plasmopara viticola by de novo transcriptome analysis

文献类型: 外文期刊

第一作者: Li, Xinlong

作者: Li, Xinlong;Xiang, Jiang;Zhang, Yali;Lu, Jiang;Yin, Ling;Dry, Ian B.;Qu, Junjie

作者机构:

关键词: Downy mildew;Plasmopara viticola;Secretome;Effector;RXLR

期刊名称:PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY ( 影响因子:2.747; 五年影响因子:2.388 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Plasmopara viticola is an oomycete pathogen that causes downy mildew, one of the most devastating diseases of grapevine. Currently, the molecular basis of the interaction between this pathogen and the grapevine host is not well understood. To explore the genes involved in P. viticola pathogenicity we performed RNA-Seq analysis of cDNAs derived from downy mildew-infected grapevine leaves for three different P. viticola isolates; two from China UL-7-2, ZJ-1-1) and one from Australia (CSIRO-L-2). Approximately 30,000 unigenes were predicted for each of the three isolates and from these over 500 potential secreted proteins were identified. Using three prediction methods, a total of 51 PvRXLR effectors were identified to be present in the secretome, with at least 26 shared by two or more P. viticola isolates. Expression profiling, based on RNA-Seq data, indicated that PvRXLRs showed three different expression patterns during infection. Transient expression of selected PvRXLRs in Nicotiana benthamiana demonstrated that all were capable of suppressing programmed cell death triggered by the mouse BAX protein or the PAMP INF1 Additionally, BLASTP and Hidden Markov Model (HMM) searches identified 10 predicted proteins belonging to the CRN (Crinkler) group of oomycete effectors. Pfam domain analysis of the secretome also identified a diverse range of putative apoplastic effectors, the major groups being glycosyl hydrolases, peptidases and protease-inhibitors. This study provides the first detailed analysis of the secretome of grapevine downy mildew and its encoded effector arsenal. (C) 2015 Elsevier Ltd. All rights reserved.

分类号: S432.1

  • 相关文献

[1]Characterization of a TIR-NBS-LRR gene associated with downy mildew resistance in grape. Fan, J. J.,Xu, X.,Ruan, Y. Y.,Zhu, Y. S.,Cui, Z. H.,Zhang, L. J.,Wang, P.,Liu, K.. 2015

[2]Distribution of Baseline Sensitivities to Natural Product Physcion Among Isolates of Sphaerotheca fuliginea and Pseudoperonospora cubensis. Yang, X. J.,Ni, H.,Yang, X. J.,Yang, L. J.,Zeng, F. S.,Xiang, L. B.,Wang, S. N.,Yu, D. Z..

[3]Secretome analysis of rice suspension-cultured cells infected by Xanthomonas oryzae pv. oryza (Xoo). Chen, Xian,Chen, Xian,Deng, Zhiping,Yu, Chulang,Yan, Chengqi,Chen, Jianping. 2016

[4]Proteomic Analysis of the Secretome of Porcine Alveolar Macrophages Infected with Porcine Reproductive and Respiratory Syndrome Virus. Li, Yuming,Wu, Zhuanchang,Liu, Ke,Qi, Pengfei,Xu, Jinpeng,Wei, Jianchao,Li, Beibei,Shao, Donghua,Shi, Yuanyuan,Qiu, Yafeng,Ma, Zhiyong.

[5]Insight into Enzymatic Degradation of Corn, Wheat, and Soybean Cell Wall Cellulose Using Quantitative Secretome Analysis of Aspergillus fumigatus. Ghimire, Prakriti Sharma,Ouyang, Haomiao,Yang, Jinghua,Lu, Yang,Jin, Cheng,Ghimire, Prakriti Sharma,Jin, Cheng,Wang, Qian,Luo, Yuanming,Shi, Bo,Ghimire, Prakriti Sharma.

[6]Effects of Different Substrates on Lignocellulosic Enzyme Expression, Enzyme Activity, Substrate Utilization and Biological Efficiency of Pleurotus Eryngii. Xie, Chunliang,Yan, Li,Gong, Wenbing,Zhu, Zuohua,Tan, Senwei,Chen, Du,Hu, Zhenxiu,Peng, Yuande. 2016

[7]Secretome analysis of Pleurotus eryngii reveals enzymatic composition for ramie stalk degradation. Xie, Chunliang,Luo, Wei,Li, Zhimin,Yan, Li,Zhu, Zuohua,Wang, Jing,Hu, Zhenxiu,Peng, Yuande.

[8]Large-Scale Identification and Characterization of Heterodera avenae Putative Effectors Suppressing or Inducing Cell Death in Nicotiana benthamiana. Chen, Changlong,Chen, Yongpan,Jian, Heng,Yang, Dan,Dai, Yiran,Pan, Lingling,Shi, Fengwei,Yang, Shanshan,Liu, Qian,Chen, Changlong,Pan, Lingling,Shi, Fengwei. 2018

[9]Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae. Dai, Yuntao,Jia, Yulin,Dai, Yuntao,Correll, James,Wang, Xueyan,Wang, Yanli. 2010

[10]De Novo Analysis of the Transcriptome of Meloidogyne enterolobii to Uncover Potential Target Genes for Biological Control. Li, Xiangyang,Yang, Dan,Zhao, Jianlong,Jian, Heng,Li, Xiangyang,Niu, Junhai,Niu, Junhai. 2016

[11]ModulationofmousemacrophageproteomeinducedbyToxoplasmagondiitachyzoitesinvivo. ZhouDonghui,YuanZiguo,ZhaoFurong,LiHailong,ZhouYang,LinRuiqing,ZouFengcai,SongHuiqun,XuMinjun,andZhuXingquan. 2011

[12]SequencevariationinROP13geneamongToxoplasmagondiiisolatesfromdifferentgeographicallocationsandhosts. WangPeiyuan,ZhouYang,LiJuan,SongHuiqun,ZhouDonghui,XuMinjun,ZhuXingquan. 2011

[13]Studying the Mechanism of Plasmopara viticola RxLR Effectors on Suppressing Plant Immunity. Li, Xinlong,Wu, Jiao,Zhang, Yali,Lu, Jiang,Yin, Ling. 2016

[14]Structure and Function of the TIR Domain from the Grape NLR Protein RPV1. Foley, Gabriel,Casey, Lachlan W.,Outram, Megan A.,Boden, Mikael,Kobe, Bostjan,Williams, Simon J.,Foley, Gabriel,Casey, Lachlan W.,Outram, Megan A.,Boden, Mikael,Kobe, Bostjan,Williams, Simon J.,Yin, Ling,Dry, Ian B.,Yin, Ling,Dry, Ian B.,Yin, Ling,Lu, Jiang,Ericsson, Daniel J.,Lu, Jiang. 2016

[15]A candidate RxLR effector from Plasmopara viticola can elicit immune responses in Nicotiana benthamiana. Li, Xinlong,Liu, Yunxiao,Zhang, Yali,Lu, Jiang,Xiang, Jiang,Lu, Jiang,Yin, Ling,Qu, Junjie,Lu, Jiang. 2017

[16]Tetra-primer ARMS PCR for rapid detection and characterisation of Plasmopara viticola phenotypes resistant to carboxylic acid amide fungicides. Kong, Fanfang,Wang, Xina,Liang, Lisha,Feng, Jie,Wang, Zhongyue,Liang, Lisha,Schoen, Cor D..

[17]FLAVONOIDS ACCUMULATE IN CELL WALLS, MIDDLE LAMELLAE AND CALLOSE-RICH PAPILLAE DURING AN INCOMPATIBLE INTERACTION BETWEEN XANTHOMONAS CAMPESTRIS PV MALVACEARUM AND COTTON. Dai, GH,Nicole, M,Andary, C,Martinez, C,Bresson, E,Boher, B,Daniel, JF,Geiger, JP.

[18]Phytohormone and genome variations in Vitis amurensis resistant to downy mildew. Qu, Junjie,Lu, Jiang,Deng, Shuhan,Liu, Shaoli,Zhang, Yali,Lu, Jiang. 2017

[19]Sensitivity, resistance stability, and cross-resistance of Plasmopara viticola to four different fungicides. Bi, Qiuyan,Ma, Zhiqiang,Bi, Qiuyan,Ma, Zhiqiang.

[20]Pathogenicity Variation and Population Genetic Structure of Plasmopara viticola in China. Ma, Lingjun,Zhang, Yali,Lu, Jiang,Yin, Ling,An, Yunhe.

作者其他论文 更多>>