A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum

文献类型: 外文期刊

第一作者: Yang, Fan

作者: Yang, Fan;Abdelnabby, Hazem;Xiao, Yannong;Yang, Fan;Abdelnabby, Hazem

作者机构:

关键词: Paecilomyces lilacinus (pt361);Sclerotinia sclerotiorum;Biocontrol;Cell-free filtrates;Spore suspension;Oilseed rape

期刊名称:MICROBIAL PATHOGENESIS ( 影响因子:3.738; 五年影响因子:3.663 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Sclerotinia sclerotiorum causes severe stem rot and yield loss in oilseed rape (Brassica napus L.) and other crops worldwide. Extensive studies have been conducted on Paecilomyces lilacinus as a nematophagous bioagent. However, no reports stated the effect of P. lilacinus as a biocontrol agent against oilseed rape rot S. sclerotiorum. This study describes such effect in lab and field trials using the new transformant pt361 derived from the wild strain P. lilacinus 36-1. Unlike the wild-type strain, the mutant pt361 showed high antagonistic effect against S. Sclerotiorum A. Under lab conditions, the pt361 inhibited (65%) radial mycelial growth of S. sclerotiorum in dual culture test producing 5.9 mm inhibition zone IZ in front of the S. sclerotiorum colony. Moreover, the cell-free filtrate of pt361 culture showed strong inhibitory effects (60.3-100%) on mycelia] growth of S. sclerotiorum. In leaf detached assay, pt361 significantly (p < 0.05) inhibited (40.4-97.9%) the extension of the leaf spots caused by S. sclerotiorum A at all tested concentrations. The genomic DNA sequences of the inserted T-DNA flanking obtained from pt361 strain was cloned, verified as a glycoside hydrolase 31 family by homologous analysis with other fungal strains, and named PGH31 (2556bp). Secondary structure prediction showed a domain (Glycoside hydrolase31). Three years field trial confirmed that the cell-free filtrates or spores suspension of pt361 achieved significant (p < 0.05) suppression of oilseed rape stem rot, promoted growth and increased yield compared to the control and exceeded, at dose 100%, the action of the fungicide procymidone (R). In conclusion, the mutant pt361 of P. lilacinus is a novel and promising biocontrol agent against oilseed rape Sclerotinia stem rot. (C) 2015 Elsevier Ltd. All rights reserved.

分类号: R3

  • 相关文献

[1]A new mycoparasite, Aspergillus sp ASP-4, parasitizes the sclerotia of Sclerotinia sclerotiorum. Hu, Xiaojia,Xie, Lihua,Yu, Changbing,Li, Yinshui,Liao, Xing,Webster, Gordon.

[2]Genetic diversity and pathogenicity differentiation of Sclerotinia sclerotiorum on rapeseed (Brassica napus L.) in Anhui Province, China. Xu, D. F.,Li, X. L.,Pan, Y. M.,Dai, Y. L.,Li, P.,Chen, F. X.,Zhang, H. J.,Guo, M.,Gao, Z. M.,Xu, D. F.. 2014

[3]Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations. Roberts, Daniel P.,Maul, Jude E.,Emche, Sarah E.,McKenna, Laurie F.,Buyer, Jeffrey S.,Hu, Xiaojia,Liao, Xing,Guo, Xuelan,Liu, Yeying,Liu, Shengyi. 2011

[4]RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection. Girard, Ian J.,Becker, Michael G.,Mao, Xingyu,Belmonte, Mark F.,Tong, Chaobo,Huang, Junyan,Liu, Shengyi,de Kievit, Teresa,Fernando, W. G. Dilantha. 2017

[5]A robust sampling approach for identification and quantification of methyl jasmonate in leaf tissue of oilseed rape for analysis of early signaling in sclerotinia sclerotiorum resistance. Wei, Fang,Cheng, Ji-hua,Liu, Sheng-yi,Huang, Jun-yan,Dong, Xu-yan,Li, Ping-ping,Kong, Fan-pi,Wu, Yu,Li, Yan-hua,Chen, Hong,Wang, Zhan,Feng, Yu-qi.

[6]Bacillus megaterium A6 suppresses Sclerotinia sclerotiorum on oilseed rape in the field and promotes oilseed rape growth. Hu, Xiaojia,Xie, Lihua,Yu, Changbing,Li, Yinshui,Zhang, Shujie,Liao, Xing,Roberts, Daniel P.,Maul, Jude E.. 2013

[7]Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field. Hu, Xiaojia,Xie, Lihua,Yu, Changbing,Li, Yinshui,Jiang, Mulan,Liao, Xiangsheng,Che, Zhi,Liao, Xing,Roberts, Daniel P.,Maul, Jude E.. 2014

[8]Use of formulated Trichoderma sp Tri-1 in combination with reduced rates of chemical pesticide for control of Sclerotinia sclerotiorium on oilseed rape. Hu, Xiaojia,Xie, Lihua,Yu, Changbing,Li, Yinshui,Qin, Lu,Hu, Lei,Zhang, Yinbo,Liao, Xing,Roberts, Daniel P.. 2015

[9]New host resistances in Brassica napus and Brassica juncea from Australia, China and India: Key to managing Sclerotinia stem rot (Sclerotinia sclerotiorum) without fungicides. Barbetti, M. J.,Li, C. X.,You, M. P.,Barbetti, M. J.,You, M. P.,Banga, S. S.,Banga, S. K.,Sandhu, P. S.,Singh, D.,Singh, R.,Liu, S. Y..

[10]Biological control of Sclerotinia disease by Aspergillus sp on oilseed rape in the field. Hu, Xiaojia,Xie, Lihua,Yu, Changbing,Li, Yinshui,Qi, Lu,Hu, Lei,Zhang, Yinbo,Liao, Xing,Roberts, Daniel P.,Roberts, Daniel P..

[11]Diversity and biocontrol potential of endophytic fungi in Brassica napus. Zhang, Jing,Yang, Long,Jiang, Daohong,Li, Guoqing,Zhang, Qinghua,Zhang, Jing,Yang, Long,Jiang, Daohong,Li, Guoqing,Zhang, Lei,Chen, Weidong. 2014

[12]Transformation of the endochitinase gene Chi67-1 in Clonostachys rosea 67-1 increases its biocontrol activity against Sclerotinia sclerotiorum. Sun, Man-Hong,Zhou, Mo,Li, Shi-Dong. 2017

[13]Inhibitory effect of chitosan on growth of the fungal phytopathogen, Sclerotinia sclerotiorum, and sclerotinia rot of carrot. Wang Qing,Zuo Jin-hua,Wang Qian,Na Yang,Gao Li-pu. 2015

[14]Transaldolase gene Ta167 enhances the biocontrol activity of Clonostachys rosea 67-1 against Sclerotinia sclerotiorum. Li, Shi-Dong,Sun, Man-Hong.

[15]Studies on the germination of scierotia of Sclerotinia sclerotiorum. Paul, V. H.. 2007

[16]Selection of reliable reference genes for gene expression studies in Clonostachys rosea 67-1 under sclerotial induction. Li, Shi-Dong,Sun, Man-Hong.

[17]Valuable New Resistances Ensure Improved Management of Sclerotinia Stem Rot (Sclerotinia sclerotiorum) in Horticultural and Oilseed Brassica Species. You, Ming Pei,Uloth, Margaret B.,Barbetti, Martin J.,You, Ming Pei,Uloth, Margaret B.,Barbetti, Martin J.,You, Ming Pei,Barbetti, Martin J.,Li, Xi Xiang,Banga, Surinder S.,Banga, Shashi K..

[18]Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps. Han, Yingpeng,Sun, Mingming,Zhao, Yue,Lv, Chunmei,Li, Dongmei,Teng, Weili,Li, Wenbin,Li, Yinghui,Qiu, Lijuan,Liu, Dongyuan,Yang, Zhijiang,Huang, Long,Zheng, Hongkun,Sun, Mingming,Lv, Chunmei.

[19]Fitness is Recovered with the Decline of Dimethachlon Resistance in Laboratory-induced Mutants of Sclerotinia sclerotiorum after Long-term Cold Storage. Li, Jin-Li,Zhu, Fu-Xing,Wu, Feng-Ci. 2015

[20]Comparative genotype reactions to Sclerotinia sclerotiorum within breeding populations of Brassica napus and B-juncea from India and China. Barbetti, M. J.,Ge, X. T.,Barbetti, M. J.,Banga, S. K.,Banga, S. S.,Fu, T. D.,Li, Y. C.,Liu, S. Y.,Singh, D..

作者其他论文 更多>>