Analysis of methylation-sensitive amplified polymorphism in different cotton accessions under salt stress based on capillary electrophoresis

文献类型: 外文期刊

第一作者: Baohua Wang

作者: Baohua Wang;Rong Fu;Mi Zhang;Zhenqian Ding;Lei Chang;Xinyu Zhu;Yafeng Wang;Baoxiang Fan;Wuwei Ye;Youlu Yuan

作者机构:

关键词: Cotton;Salt stress;Capillary electrophoresis;Methylation-sensitive amplification polymorphism

期刊名称:GENES & GENOMICS ( 影响因子:1.839; 五年影响因子:1.329 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A methylation-sensitive amplification polymorphism method based on capillary electrophoresis was used to analyze DNA methylation levels in three cotton accessions, two salt-tolerant accessions CCRI 35 and Zhong 07 and one salt-sensitive accession CCRI 12. Many categories of DNA methylation happened in the three cotton accessions under salt treatment, including hypermethylation, hypomethylation, and other patterns. Hypermethylation happened at a significantly higher rate than that of hypomethylation in salt-tolerant accessions CCRI 35 and Zhong 07. On the contrary, in salt-sensitive accession CCRI 12, hypomethylation happened at a significantly higher rate than that of hypermethylation. In general, the global DNA methylation level significantly increased under salt stress in both salt-tolerant accessions CCRI 35 and Zhong 07, whereas there was no significant difference in the salt-sensitive accessions CCRI 12. Our results suggested that salt-tolerant cotton might have a mechanism of increasing the methylation level when responding to salt stress; the increase of the global level of DNA methylation and also different methylation patterns might play important roles in tolerance to salt stress in cotton. Some interesting genes were found through cloning and analysis of differently methylated DNA sequences, which might contribute to salt tolerance in cotton.

分类号: Q

  • 相关文献

[1]Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Kong, Xiangqiang,Wang, Tao,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Dong, Hezhong,Wang, Tao,Dong, Hezhong.

[2]Study on DNA Cytosine Methylation of Cotton (Gossypium hirsutum L.) Genome and Its Implication for Salt Tolerance. ZHAO Yun-lei,YU Shu-xun,YE Wu-wei,WANG Hong-mei,WANG Jun-juan,FANG Bao-xing. 2010

[3]Epigenetic mechanisms of salt tolerance and heterosis in Upland cotton (Gossypium hirsutum L.) revealed by methylation-sensitive amplified polymorphism analysis. Baohua Wang,Mi Zhang,Rong Fu,Xiaowei Qian,Ping Rong,Yan Zhang,Peng Jiang,Junjuan Wang,Xuke Lu,Delong Wang,Wuwei Ye,Xinyu Zhu.

[4]Relative contribution of Na+/K+ homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton (Gossypium hirsutum L.) cultivars. Ning Wang,Wenqing Qiao,Huang, Qun,Yan, Gentu,Xiaohong Liu,Jianbin Shi,Qinghua Xu,Hong Zhou,Gentu Yan,Qun Huang. 2017

[5]Soaking in H2O2 regulates ABA biosynthesis and GA catabolism in germinating cotton seeds under salt stress. Kong, Xiangqiang,Luo, Zhen,Zhang, Yanjun,Li, Weijiang,Dong, Hezhong.

[6]Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. Zhen Peng,Shoupu He,Wenfang Gong,Junling Sun,Zhaoe Pan,Feifei Xu,Yanli Lu,Xiongming Du. 2014

[7]Whole-genome DNA methylation analysis in cotton (Gossypium hirsutum L.) under different salt stresses. Xuke LU,Xiaojie ZHAO,Delong WANG,Zujun YIN,Junjuan WANG,Weili FAN,Shuai WANG,Tianbao ZHANG,Wuwei YE.

[8]A temperature-tolerant multiplex elements and genes screening system for genetically modified organisms based on dual priming oligonucleotide primers and capillary electrophoresis. Fu, Wei,Wang, Chenguang,Zhu, Pengyu,Zhu, Shuifang,Wei, Shuang,Wang, Chenguang,Du, Zhixin,Wu, Xiyang,Wu, Gang.

[9]Self-assembly of cellulose nanoparticles as electrolyte additive for capillary electrophoresis separation. Huang, Dihui,Yang, Qin,Jin, Shanxia,Zhou, Ping,Deng, Qianchun.

[10]Modified capillary electrophoresis based measurement of the binding between DNA aptamers and an unknown concentration target. Zhang, Yue-Wei,Yan, Hai-Yu,Fu, Ping,Jiang, Fei,Zhang, Yao,Wu, Wen-Xue,Li, Jin-Xiang.

[11]Effect of exogenous NH4+-N supply on distribution of ureide content in various tissues of alfalfa plants, Medicago sativa. Cheng, XG,Nomura, M,Sato, T,Fujikake, H,Ohyama, T,Tajima, S. 1999

[12]A highly efficient capillary electrophoresis-based method for size determination of water-soluble CdSe/ZnS core-shell quantum dots. Li, Yong-Qiang,Wang, Hai-Qiao,Wang, Jian-Hao,Guan, Li-Yun,Liu, Bi-Feng,Zhao, Yuan-Di,Chen, Hong. 2009

[13]Selection and development of representative simple sequence repeat primers and multiplex SSR sets for high throughput automated genotyping in maize. Wang FengGe,Zhao JiuRan,Dai JingRui,Yi HongMei,Kuang Meng,Sun YanMei,Yu XinYan,Guo JingLun,Wang Lu.

[14]On-line pre-concentration and UV determination of DNA fragments by dynamic coating capillary electrophoresis and its application to detection of genetically modified oilseed rape based on PCR. Chen, Hong,Wu, Yu-Hua,Song, Dan-Yang,Zhang, Wen,Dong, Xu-Yan,Li, Pei-Wu,Lu, Chang-Ming.

[15]Capillary electrophoresis and open tubular capillary electrochromatography using a magnesia-zirconia coated capillary. Xie, MJ,Feng, YQ,Da, SL,Meng, DY,Ren, LW.

[16]Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. ZhongQun, He,ChaoXing, He,ZhiBin, Zhang,ZhiRong, Zou,HuaiSong, Wang.

[17]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[18]Cloning of the full-length cDNA of the wheat involved in salt stress: Root hair defective 3 gene (RHD3). Shan, L,Zhao, SY,Xia, GM. 2005

[19]Molecular cloning and expression analysis of FvMYB1 from Fraxinus velutina Torr.. Li, Tian,Bi, Yu-Ping,Li, Tian,Peng, Zhen-Ying,Bi, Yu-Ping,Fan, Zhong-Xue,Li, Tian,Peng, Zhen-Ying,Bi, Yu-Ping,Fan, Zhong-Xue,Li, Tian. 2013

[20]The K+/H+ Antiporter AhNHX1 Improved Tobacco Tolerance to NaCl Stress by Enhancing K+ Retention. Zhang, Wei-Wei,Meng, Jing-Jing,Yang, Sha,Guo, Feng,Li, Xin-Guo,Xing, Jin-Yi,Wan, Shu-Bo. 2017

作者其他论文 更多>>