Genetic Dissection of Leaf-related Traits using 156 Chromosomal Segment Substitution Lines

文献类型: 外文期刊

第一作者: Liu, Xi

作者: Liu, Xi;Liu, Linglong;Xiao, Yinhui;Liu, Shijia;Tian, Yunlu;Chen, Liangming;Wang, Zhiquan;Jiang, Ling;Zhao, Zhigang;Wan, Jianmin;Wan, Jianmin

作者机构:

关键词: Chlorophyll content;Chromosome segment substitution line (CSSL);Leaf length;Leaf width;Quantitative trait loci (QTL);Rice (Oryza sativa L.)

期刊名称:JOURNAL OF PLANT BIOLOGY ( 影响因子:2.434; 五年影响因子:2.455 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A two-line super-hybrid rice (Oryza sativa L.) variety [Liangyoupei9 (LYP9)] demonstrated superiority over its both parents, viz. elite inbred lines 93-11 and Pei-ai64S (PA64S), as well as other conventional hybrids, and had long been exploited in China. However, the genetic basis of its leaf-related traits, supposed to be an important component for yield potential, remains elusive. Here, initially a set of chromosome segment substitution lines (CSSLs) was constructed, in which the genome of Pei-ai64S has been introgressed into the background of 93-11. This set was developed by marker aided selection, based on 123 polymorphic SSR markers. The introgressed chromosomal segments presented in the 156 CSSLs covered 96.46% of Pei-ai64S genome. Afterwards, the CSSLs were deployed to assess the genetic basis of leaf size (length and width) and chlorophyll content of top three leaves across five different environments. The CSSLs showed transgressive segregation for all of the traits, and significant correlations were detected among most of the traits. A total of 27 quantitative trait loci (QTL) were identified on ten chromosomes, and three QTL cluster affecting related traits were found on chromosome 3, 6, and 8, respectively. Remarkably, two key QTLs, qALW3-1 and qALW3-2, both controlling the antepenultimate leaf width, were identified in all five environments, and their effect were further validated by CSSLs harboring the two QTL alleles. Our results indicate that developing CSSLs is a powerful tool for genetic dissection of quantitative traits. Meanwhile, the QTLs controlling leaf-related traits uncovered here provide useful information for marker-assisted selection in improving the performance of leaf morphology and photosynthetic ability.

分类号: Q94

  • 相关文献

[1]QTL mapping of dehiscence length at the basal part of thecae related to heat tolerance of rice (Oryza sativa L.). Zhao, Ling,Zhao, Chun-Fang,Zhou, Li-Hui,Lin, Jing,Zhao, Qing-Yong,Zhu, Zhen,Chen, Tao,Yao, Shu,Wang, Cai-Lin,Zhao, Ling,Zhao, Chun-Fang,Zhou, Li-Hui,Lin, Jing,Zhao, Qing-Yong,Zhu, Zhen,Chen, Tao,Yao, Shu,Hasegawa, Toshihiro,Matsui, Tsutomu.

[2]Genetic Dissection for Leaf Correlative Traits of Rice (Oryza sativa L.)Under Drought Stress. Guo Longbiao,Qian Qian,Zeng Dali,Dong Guojun,Teng Sheng,Zhu Lihuang. 2004

[3]OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. Luan, Weijiang,Liu, Yuqin,Zhang, Fengxia,Song, Yuanli,Wang, Zhengying,Peng, Yongkang,Sun, Zongxiu.

[4]Construction of a linkage map for quantitative trait loci associated with economically important traits in creeping bentgrass (Agrostis stolonifera L.). Zhang, Tifu,Ge, Min,Ye, Xiaoqing,Zhao, Han,Bughrara, Suleiman S..

[5]Dissection of genetic effects of quantitative trait loci (QTL) in transgenic cotton. Yongshan Zhang,Shuxun Yu,Xiangmo Guo,Zhiwei Wang,Qinglian Wang,Li Chu. 2008

[6]Quantitative trait loci analysis of Verticillium wilt resistance in interspecific backcross populations of Gossypium hirsutum x Gossypium barbadense. Yuzhen Shi,Baocai Zhang,Aiying Liu,Wentan Li,Junwen Li,Quanwei Lu,Zhen Zhang,Shaoqi Li,Wankui Gong,Haihong Shang,Juwu Gong,Tingting Chen,Qun Ge,Tao Wang,Heqin Zhu,Zhi Liu,Youlu Yuan. 2016

[7]Progress of genome wide association study in domestic animals. Zhang, Hui,Wang, Zhipeng,Wang, Shouzhi,Li, Hui,Zhang, Hui,Wang, Zhipeng,Wang, Shouzhi,Li, Hui. 2012

[8]Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Shen, X,Zhou, M,Lu, W,Ohm, H. 2003

[9]Detection of Drought-Related Loci in Rice at Reproductive Stage Using Selected Introgressed Lines. Chen Man-yuan,Shi Ying-yao,Yao Da-nian,Chen Man-yuan,Fu Bin-ying,Xu Jian-long,Zhu Ling-hua,Gao Yong-ming,Li Zhi-kang,Ali, J.,Zhao Ming-fu,Jiang Yun-zhu,Li Zhi-kang. 2011

[10]Mapping of QTLs associated with important agronomic traits using three populations derived from a super hybrid rice Xieyou9308. Liang, Yongshu,Zhan, Xiaodeng,Gao, Zhiqiang,Lin, Zechuan,Yang, Zhanlie,Zhang, Yinxin,Shen, Xihong,Cao, Liyong,Cheng, Shihua,Liang, Yongshu,Zhan, Xiaodeng,Gao, Zhiqiang,Lin, Zechuan,Yang, Zhanlie,Zhang, Yinxin,Shen, Xihong,Cao, Liyong,Cheng, Shihua. 2012

[11]Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice. Zang JinPing,Sun Yong,Wang Yun,Yang Jing,Li Fang,Zhou YongLi,Zhu LingHua,Xu JianLong,Jessica, Reys,Mohammadhosein, Fotokian,Li ZhiKang.

[12]Mining of Candidate Maize Genes for Nitrogen Use Efficiency by Integrating Gene Expression and QTL Data. Liu, Ruixiang,Zhang, Hao,Zhao, Pu,Zhang, Zuxin,Liu, Ruixiang,Zhang, Zuxin,Zheng, Yonglian,Liang, Wenke,Tian, Zhigang.

[13]Genome-wide association study of resistance to rough dwarf disease in maize. Weng, Jianfeng,Zhang, Degui,Zhang, Xiaocong,Shi, Liyu,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Ci, Xiaoke,Bai, Li,Li, Xinhai,Zhang, Shihuang,Yang, Xiaoyan,Meng, Qingchang,Yuan, Jianhua,Guo, Xinping.

[14]Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Wang, Peng,Zhou, Guilin,Cui, Kehui,Yu, Sibin,Wang, Peng,Zhou, Guilin,Cui, Kehui,Li, Zhikang,Yu, Sibin,Li, Zhikang.

[15]Importance of over-dominance as the genetic basis of heterosis in rice. Zhuang, JY,Fan, YY,Wu, JL,Xia, YW,Zheng, KL.

[16]Mapping Quantitative Trait Loci for Post-Anthesis Dry Matter Accumulation in Wheat. Su, Jun-Ying,Tong, Yi-Ping,Liu, Quan-You,Li, Bin,Jing, Rui-Lian,Li, Ji-Yun,Li, Zhen-Sheng.

[17]Identification of candidate genes for fiber length quantitative trait loci through RNA-Seq and linkage and physical mapping in cotton. Xihua Li,Yu, Jiwen,Yu, Shuxun,Zhang, Jinfa,Man Wu,Guoyuan Liu,Wenfeng Pei,Honghong Zhai,Jiwen Yu,Jinfa Zhang,Shuxun Yu. 2017

[18]Identification of quantitative trait loci across interspecific F-2, F-2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Yu, Jiwen,Yu, Shuxun,Wu, Man,Zhai, Honghong,Li, Xingli,Fan, Shuli,Song, Meizhen,Gore, Michael,Zhang, Jinfa.

[19]Construction of a new set of rice chromosome segment substitution lines and identification of grain weight and related traits QTLs. Bian, Jian Min,Jiang, Ling,Liu, Ling Long,Wei, Xiang Jin,Xiao, Yue Hua,Zhang, Lu Jun,Zhao, Zhi Gang,Wan, Jian Min,Zhai, Hu Qu,Wan, Jian Min. 2010

[20]Simultaneous improvement and genetic dissection of grain yield and its related traits in a backbone parent of hybrid rice (Oryza sativa L.) using selective introgression. Zhang, Hongjun,Wang, Hui,Qian, Yiliang,Shi, Yingyao,Zhu, Linghua,Gao, Yongming,Li, Zhikang,Qian, Yiliang,Shi, Yingyao,Xia, Jiafa,Li, Zefu,Ali, Jauhar.

作者其他论文 更多>>