Fine mapping of DTH3b, a minor heading date QTL potentially functioning upstream of Hd3a and RFT1 under long-day conditions in rice

文献类型: 外文期刊

第一作者: Chen, Liping

作者: Chen, Liping;Wu, Weixun;Liu, Linglong;Lu, Guangwen;Wang, Jiulin;Jiang, Ling;Zhai, Huqu;Wan, Jianmin;Zhong, Zhengzheng;Jin, Mingna;Tan, Junjie;Sheng, Peike;Wang, Dan;Cheng, Zhijun;Wang, Jiulin;Zhang, Xin;Guo, Xiuping;Wu, Fuqing;Lin, Qibing;Zhu, Shanshan;Wu, Chuanyin;Wan, Jianmin

作者机构:

关键词: Rice;DTH3b;Minor-effect QTL;Heading date;Near-isogenic line;Long-day conditions

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Flowering time or heading date in rice is an important agronomic trait that determines cultivation area and cropping season of a given variety. The genes/loci that have minor effect on the heading date are believed to play a critical role in adaptation of rice to different geographical regions and are preferred by breeders. Previously, we detected a stable minor-effect quantitative trait locus, qDTH-3b (for Days to heading 3b; hereafter referred to as DTH3b), using a small population consisting of recombinant inbred lines derived from a cross between the japonica cv. Asominori (Aso) and the indica cv. IR24. However, its precise location remains to be defined. In this study, we fine-mapped DTH3b by using advanced backcrossing lines and explored its role in regulating the heading date. First, we constructed a BC4F2 population by backcrossing a chromosome segment substitution line (CSSL23) with Aso as a recurrent parent. Then, we developed a near-isogenic line (NIL) from this population by marker-assisted selection. This NIL has the genetic background of Aso but carries a 12-cMDTH3b-containing chromosome segment from IR24. Compared with Aso, the NIL showed 6.9-day delay in flowering time and 63.8 % lower seed maturation rate under long-day (LD) conditions, whereas there was no significant difference between the NIL and Aso under short-day conditions. Using a total of 1500 Asominori/NIL F-2:3 or F-3:4 late-heading families grown under LD conditions, we finally dissected DTH3b to a single Mendelian factor and delimited it to a 46-kb genomic region which contains seven open reading frames. Further, our quantitative real-time PCR analysis indicated that transcription level of Hd3a (Heading date 3a) and RFT1 (RICE FLOWERING LOCUS T 1), the two florigen genes, was significantly lower in the NIL than in Aso, suggesting that DTH3b functions upstream of Hd3a and RFT1 under LD conditions. We propose that DTH3b(Aso) positively regulates flowering time and contributes to adaptation of rice to the north. Cloning and then manipulation of DTH3b can be a useful approach to optimize flowering time in rice breeding.

分类号: Q94

  • 相关文献

[1]Fine mapping of a minor-effect QTL, DTH12, controlling heading date in rice by up-regulation of florigen genes under long-day conditions. Zhong, Zhengzheng,Zhang, Xin,Cheng, Zhijun,Wang, Jiulin,Wan, Jianmin,Zhong, Zhengzheng,Wu, Weixun,Wang, Hongjun,Chen, Liping,Liu, Linglong,Wang, Chunming,Zhao, Zhigang,Lu, Guangwen,Gao, He,Wei, Xiangjin,Yu, Chuanyuan,Chen, Mingjiang,Shen, Yingyue,Jiang, Ling,Wan, Jianmin. 2014

[2]Genotyping the Heading Date of Male-Sterile Rice Line II-32A. Xu, JF,Jiang, L,Wei, XJ,Zhang, WW,Liu, SJ,Chen, LM,Wang, CM,Luo, LG,Wan, JM.

[3]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

[4]Effects of Hd2 in the presence of the photoperiod-insensitive functional allele of Hd1 in rice. Zhuang, Jie-Yun,Cheng, Shi-Hua. 2016

[5]Identification of QTLs for rice flower opening time in two environments. Zhang, Meng,Zhang, Huali,Dai, Dongqing,Li, Ximing,Chen, Junyu,Ma, Liangyong,Bao, Jinsong.

[6]OsLBD37 and OsLBD38, two class II type LBD proteins, are involved in the regulation of heading date by controlling the expression of Ehd1 in rice. Li, Chaonan,Zhu, Shanshan,Wu, Fuqing,Cheng, Zhijun,Guo, Xiuping,Zhang, Xin,Wan, Jianmin,Zhang, Huan,Chen, Liping,Cai, Maohong,Wang, Jiachang,Chai, Juntao,Wan, Jianmin.

[7]OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice. Bai, Bo,Zhao, Jie,Li, Yaping,Zhou, Jinjun,Xie, Xianzhi,Li, Yaping,Zhang, Fang,Chen, Fan.

[8]Efficient QTL detection for heading date in backcross inbred line and F-2 population derived from the same rice cross. Lu, Bingyue,Xie, Kun,Yang, Chunyan,Zhang, Long,Wu, Tao,Li, Linfang,Liu, Xi,Jiang, Ling,Wan, Jianmin,Wan, Jianmin. 2011

[9]Heading date QTL in rice derived from an analysis of chromosome segment substitution lines. Zhang, Y. -S.,Jiang, L.,Liu, X.,Liu, S.,Chen, L.,Wan, J.,Wan, J.. 2011

[10]Long photoperiod affects the maize transition from vegetative to reproductive stages: a proteomic comparison between photoperiod-sensitive inbred line and its recurrent parent. Tian, Lei,Wang, Shunxi,Song, Xiaoheng,Liu, Ping,Chen, Zan,Chen, Yanhui,Wu, Liuji,Tian, Lei,Wang, Shunxi,Song, Xiaoheng,Liu, Ping,Chen, Zan,Chen, Yanhui,Wu, Liuji,Tian, Lei,Wang, Shunxi,Song, Xiaoheng,Liu, Ping,Chen, Zan,Chen, Yanhui,Wu, Liuji,Zhang, Jun. 2018

[11]Marker-Assisted Development and Evaluation of Near-Isogenic Lines for Broad-Spectrum Powdery Mildew Resistance Gene Pm2b Introgressed into Different Genetic Backgrounds of Wheat. Xu, Hongxing,Cao, Yanwei,Xu, Yunfeng,Ma, Pengtao,Ma, Feifei,Song, Liping,An, Diaoguo,Cao, Yanwei,Li, Lihui. 2017

[12]A Comparative Study on the Population Fitness of Three Strains of Nilaparvata lugens (Hemiptera: Delphacidae) Differ in Eye Color-Related Genes. Liu, Shuhua,Wu, Jincai,Liu, Shuhua,Yang, Baojun,Luo, Ju,Tang, Jian.

[13]Proteomic analysis of blast-resistant near-isogenic lines derived from japonica rice, var. Yunyin, infected with Magnaporthe oryzae. Xue, Weimin,Mao, Xiaohui,Wei, Yidong,Ling, Lian,Zhu, Yongsheng,Zhang, Jianfu,Xie, Huaan,Xue, Weimin,Mao, Xiaohui,Wei, Yidong,Ling, Lian,Zhu, Yongsheng,Zhang, Jianfu,Xie, Huaan,Xue, Weimin,Mao, Xiaohui,Wei, Yidong,Ling, Lian,Zhu, Yongsheng,Zhang, Jianfu,Xie, Huaan,Xue, Weimin,Mao, Xiaohui,Wei, Yidong,Ling, Lian,Zhu, Yongsheng,Zhang, Jianfu,Xie, Huaan,Xue, Weimin,Mao, Xiaohui,Wei, Yidong,Ling, Lian,Zhu, Yongsheng,Zhang, Jianfu,Xie, Huaan,Xue, Weimin,Mao, Xiaohui,Wei, Yidong,Ling, Lian,Zhu, Yongsheng,Zhang, Jianfu,Xie, Huaan,He, Shuilin. 2014

[14]Identification of molecular markers associated with the double flower trait in Petunia hybrida. Liu, Caixian,He, Yanhong,Gou, Tianyun,Li, Xin,Ning, Guogui,Bao, Manzhu,Liu, Caixian,Li, Xin.

[15]QTL Detection and Epistasis Analysis for Heading Date Using Single Segment Substitution Lines in Rice (Oryza sativa L.). Li Guang-xian,Li Si-shen,Chen Ai-hua,Liu Xu,Wang Wen-ying,Ding Han-feng,Li Jun,Liu Wei,Yao Fang-yin,Li Guang-xian. 2014

[16]Flowering time regulation by the CONSTANS-Like gene OsCOL10. Tan, Junjie,Wu, Fuqing,Wan, Jianmin,Wan, Jianmin,Tan, Junjie. 2017

[17]Genetic analyses of heading date of Japonica rice cultivars from Northeast China. Wei, Xiangjin,Jiang, Ling,Xu, Junfeng,Zhang, Wenwei,Lu, Guangwen,Zhang, Yongsheng,Wan, Jianmin,Wan, Jianmin. 2008

[18]A point mutation in the zinc finger motif of RID1/EHD2/OsID1 protein leads to outstanding yield-related traits in japonica rice variety Wuyunjing 7. Hu, Shikai,Dong, Guojun,Xu, Jie,Su, Yan,Shi, Zhenyuan,Ye, Weijun,Li, Yuanyuan,Li, Gengmi,Zhang, Bin,Hu, Jiang,Qian, Qian,Zeng, Dali,Guo, Longbiao. 2013

[19]QTL analysis for heading date and yield traits using recombinant inbred lines of indica rice grown in different cropping seasons. Cao, L. -Y.,Wu, J. -L.,Fan, Y. -Y.,Cheng, S. -H.,Zhuang, J. -Y.,Cao, L. -Y.,Wu, J. -L.,Fan, Y. -Y.,Cheng, S. -H.,Zhuang, J. -Y..

[20]Association mapping of quantitative trait loci for yield-related agronomic traits in rice (Oryza sativa L.). Xu Fei-fei,Huang Yan,Tong Chuan,Chen Ya-ling,Bao Jin-song,Jin Liang. 2016

作者其他论文 更多>>