Assessing vulnerability and adaptive capacity to potential drought for winter-wheat under the RCP 8.5 scenario in the Huang-Huai-Hai Plain

文献类型: 外文期刊

第一作者: Li, Yingchun

作者: Li, Yingchun;Huang, Huanping;Ju, Hui;Lin, Erda;Xiong, Wei;Han, Xue;Xu, Jianwen;Cao, Yang;Hu, Wei;Xiong, Wei;Wang, Heran;Peng, Zhengping;Wang, Yanqun

作者机构:

关键词: Adaptive capacity;Potential drought;Vulnerability;Winter wheat;Huang-Huai-Hai Plain

期刊名称:AGRICULTURE ECOSYSTEMS & ENVIRONMENT ( 影响因子:5.567; 五年影响因子:6.064 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Drought is one of the major climatic disasters intimidating winter wheat production in the Huang-Huai-Hai (3H) Plain of China. The yield damage caused by drought tends to increase in the future, indicated by a pronounced uprising of drought events under RCP 8.5 scenario in terms of its affecting magnitude and area. This paper presents a modeling approach by using crop model DSSAT and hydrological indices to assess the vulnerability of winter wheat to future potential drought, based on an integrated assessment of exposure, sensitivity and adaptive capacity. Our results demonstrate that Beijing, Tianjin, Hebei and Shandong are more exposed and sensitive to potential drought than other regions in 3H. Traditional irrigation has the greater benefits in northern 3H Plain than southern regions, but is still insufficient to impede the yield loss due to potential drought. Under RCP 8.5 emission scenario and the period of 20102050, the worst drought effect is projected to occur around 2030. More than half of 3H plain are subject to high drought vulnerability. With increasing drought risks, we suggest immediate and appropriate adaptation actions to be taken before 2030s, especially in Shandong and Hebei, the most vulnerable provinces of 3H plain. (C) 2015 Elsevier B.V. All rights reserved.

分类号: S

  • 相关文献

[1]Evaluation of CropSyst model embedded in BioMa platform in simulating the yield of winter wheat in North China. Huang Qing,Liu Hang,Wu Wenbin,Chen Zhongxin. 2016

[2]Water consumption in summer maize and winter wheat cropping system based on SEBAL model in Huang-Huai-Hai Plain, China. Yang Jian-ying,Huo Zhi-guo,Mei Xu-rong,Yan Chang-rong,Liu Qin,Ju Hui,Zhao Feng-hua. 2015

[3]Adopting higher-yielding varieties to ensure Chinese food security under climate change in 2050. Ye, Liming,Tang, Huajun,Yang, Guixia,Van Ranst, Eric,Ye, Liming,Tang, Huajun,Yang, Guixia,Ye, Liming,Van Ranst, Eric. 2015

[4]Assessment of vulnerability to climate change in the Inner Mongolia steppe at a county scale from 1980 to 2009. Yang, Tingting,Li, Peng,Wu, Xinhong,Hou, Xiangyang,Liu, Pengtao,Yao, Guozheng.

[5]Wheat Optimized Fertilization of High Yield Field with Returning Whole Stalks into the Soil in Huang-huai-hai Plain. Sui, Xue-Yan,Wang, Meng,Wang, Yong,Guo, Hong-Hai,Li, Zhan,Zhang, Xiao-Dong. 2016

[6]Spatiotemporal variation of drought characteristics in the Huang-Huai-Hai Plain, China under the climate change scenario. Li Xiang-xiang,Ju Hui,Yan Chang-rong,Liu Qin,Li Xiang-xiang,Garre, Sarah,Liu Qin,Batchelor, William D.. 2017

[7]Temperature and Precipitation Suitability Evaluation for the Winter Wheat and Summer Maize Cropping System in the Huang-Huai-Hai Plain of China. Qiu Jian-jun,Li Hu,Nguyen Thanh Tuan,Verdoodt, Ann,Van Ranst, Eric. 2011

[8]Satellite Observations on Agricultural Adaptation to Drought in Southwestern China. Dong, Yansheng,Li, Cunjun,Chen, Hongping. 2012

[9]ASSESSING AND MAPPING CROP VULNERABILITY DUE TO SUDDEN COOLING USING TIME SERIES SATELLITE DATA. Dong, Yansheng,Gu, Xiaohe,Wang, Jihua,Cui, Bei. 2012

[10]Assessing vulnerability and adaptation responses to rainfall-related landslides in China, a case study of Enshi Prefecture in Hubei Province. Duan, Minjie,Gao, Qingzhu,Wan, Yunfan,Li, Yue,Guo, Yaqi,Ganzhu, Zhabu,Wu, Yang. 2011

[11]Risk assessment on storm surges in the coastal area of Guangdong Province. Li, Kuo,Li, Guo Sheng.

[12]Catastrophic Risk Assessment of Crops Caused by Flood Based on Vulnerability-Using Northeast China as a Case. Zhao, Sijian,Zhang, Qiao. 2014

[13]Methods and applications for ecological vulnerability evaluation in a hyper-arid oasis: a case study of the Turpan Oasis, China. Pei, Huan,Wang, Xiaoyan,Fang, Shifeng,Fang, Shifeng,Lin, Lu,Qin, Zhihao. 2015

[14]Morphological and yield responses of winter wheat (Triticum aestivum L.) to raised bed planting in Northern China. Wang, Fahong,Kong, Ling'an,Li, Shengdong,Si, Jisheng,Feng, Bo,Zhang, Bin,Wang, Fahong,Sayre, Ken. 2011

[15]Estimating Winter Wheat Leaf Area Index From Ground and Hyperspectral Observations Using Vegetation Indices. Xie, Qiaoyun,Huang, Wenjiang,Zhang, Bing,Dong, Yingying,Xie, Qiaoyun,Chen, Pengfei,Song, Xiaoyu,Pascucci, Simone,Pignatti, Stefano,Laneve, Giovanni. 2016

[16]Winter wheat biomass estimation based on canopy spectra. Zheng Ling,Zhu Dazhou,Zhang Baohua,Wang Cheng,Zhao Chunjiang,Zheng Ling,Liang Dong. 2015

[17]MONITORING WINTER WHEAT MATURITY BY HYPERSPECTRAL VEGETATION INDICES. Wang, Qian,Huang, Yuanfang,Wang, Qian,Li, Cunjun,Wang, Jihua,Song, Xiaoyu,Huang, Wenjiang. 2012

[18]Yield loss compensation effect and water use efficiency of winter wheat under double-blank row mulching and limited irrigation in northern China. Yan, Qiuyan,Yang, Feng,Dong, Fei,Lu, Jinxiu,Li, Feng,Zhang, Jiancheng,Yan, Qiuyan,Duan, Zengqiang,Lou, Ge. 2018

[19]Discrimination of yellow rust and powdery mildew in wheat at leaf level using spectral signatures. Yuan, Lin,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou,Huang, Wenjiang,Wang, Jihua. 2012

[20]SELECTION OF SPECTRAL CHANNELS FOR SATELLITE SENSORS IN MONITORING YELLOW RUST DISEASE OF WINTER WHEAT. Yuan, Lin,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Wang, Jihua. 2013

作者其他论文 更多>>