Correlating between evapotranspiration and precipitation provides insights into Xilingol grassland eco-engineering at larger scale

文献类型: 外文期刊

第一作者: Zhang Shengwei

作者: Zhang Shengwei;Shen Rui;Liu Tingxi;Zhang Zichang;Zhao Hongbin;Shao Hongbo;Shao Hongbo

作者机构:

关键词: Grassland eco-engineering;Grass evapotranspiration;Dual crop coefficient;Soil water content;Precipitation variation

期刊名称:ECOLOGICAL ENGINEERING ( 影响因子:4.035; 五年影响因子:4.611 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The Xilingol Grassland in Northern China is the largest grassland ecosystem of Inner Mongolia and plays an important role in the local ecosystem. However, grassland desertification and degradation are quite severe in this area. Therefore, we simulated the daily actual evapotranspiration (ET) and soil water content in a representative area of the Xilingol Grassland, West Ujimqin Balaguer River basin, during the grass growth period by using the dual crop coefficient model. In addition, we compared the simulation results with actual data and found that the R-2 value between the actual measurement data and simulation data for soil water content was 0.662 with an error of 4.14%. The simulated total ET during the entire growth period in 2013 was 332.41 mm, including 215.13 mm grassland transpiration (64.7%) and 117.28 mm soil evaporation. Then we randomly selected precipitation and ET values for different growth periods for analysis. The results showed that the absolute R values are all higher than 0.5, which indicates that variations in ET are highly correlated with precipitation over time. By reducing the precipitation to half the actual values, the model predicts 257.71 mm ET (22.5% less than the value in natural conditions), 176.84 mm transpiration (17.8% less than the value in natural conditions), and 80.87 mm soil evaporation (31% less than the value in natural conditions). By assuming that the precipitation was reduced by half, the model predicts 274.89 mm ET (17.3% less than the actual value), 190.05 mm grassland transpiration (11.7% less than the actual value), and 84.85 mm soil evaporation (27.7% less than the actual value). (C) 2015 Elsevier B.V. All rights reserved.

分类号: Q14`X171

  • 相关文献

[1]The sensitivity of temperate steppe CO2 exchange to the quantity and timing of natural interannual rainfall. Hao, Yanbin,Wang, Yanfen,Zhou, Xiaoqi,Huang, Xiangzhong,Cui, Xiaoyong,Mei, Xurong.

[2]The response of grassland productivity, soil carbon content and soil respiration rates to different grazing regimes in a desert steppe in northern China. Hou, Xiangyang,Wang, Zhen,Ji, Lei,Yun, Xiangjun,Michael, Schellenberg P..

[3]EFFECTS OF REGULATED DEFICIT IRRIGATION ON GRAIN YIELD AND QUALITY TRAITS IN WINTER WHEAT. Meng, Zhaojiang,Duan, Aiwang,Gao, Yao,Wang, Xiaosen,Shen, Xiaojun,Dassanayake, Kithsiri Bandara,Chen, Deli.

[4]Spatial distributions of soil chemical and physical properties prior to planting soybean in soil under ridge-, no- and conventional-tillage in a maize-soybean rotation. Fan, R. Q.,Fan, R. Q.,Yang, X. M.,Drury, C. F.,Reynolds, W. D.,Fan, R. Q.,Zhang, P..

[5]Soil-water interacting use patterns driven by Ziziphus jujuba on the Chenier Island in the Yellow River Delta, China. Zhu, Jinfang,Lu, Zhaohua,Zhu, Jinfang,Liu, Jingtao,Lu, Zhaohua,Xia, Jiangbao,Sun, Jingkuan,Zhao, Yanyun,Shao, Hongbo,Shao, Hongbo.

[6]Mulching affects photosynthetic and chlorophyll a fluorescence characteristics during stage III of peach fruit growth on the rain-fed semiarid Loess Plateau of China. Wang, Chenbing,Chen, Baihong,Wang, Falin,Wang, Chenbing,Wang, Hong,Zhao, Xiumei,Wang, Falin.

[7]Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China. Wang, Hong,Wang, Chenbing,Zhao, Xiumei,Wang, Falin,Wang, Chenbing.

[8]Long-term effects of returning wheat straw to croplands on soil compaction and nutrient availability under conventional tillage. Guo, Z.,Wang, D. Z.,Guo, Z.,Wang, D. Z.. 2013

[9]EFFECTS OF NITROGEN APPLICATION ON BIOMASS ACCUMULATION, REMOBILIZATION, AND SOIL WATER CONTENTS IN A RAINFED WHEAT FIELD. Duan, Wenxue,Yu, Zhenwen,Zhang, Yongli,Wang, Dong,Shi, Yu,Duan, Wenxue,Xu, Zhenzhu. 2014

[10]Simulating soil water and solute transport in a soil-wheat system using an improved genetic algorithm. Luo, Changshou,Sun, Sufen,Zhang, Junfeng,Zuo, Qiang,Li, Baoguo. 2008

[11]An Evaluation of Minimum Tillage in the Corn-wheat Cropping System in Hebei Province, China: Wheat productivity and water conservation. Yang, Xiaomei,Yin, Changbin,Li, Guichun,Chien, Hsiaoping,Nagumo, Fujio. 2016

[12]Water repellency as conditioned by physical and chemical parameters in grassland soil. Gao, Yongfei,Liu, Honglin,Wu, Hongxin,Alamus,Lin, Qimei. 2018

[13]Root Development of Transplanted Cotton and Simulation of Soil Water Movement under Different Irrigation Methods. Zhang, Hao,Liu, Hao,Sun, Chitao,Gao, Yang,Gong, Xuewen,Sun, Jingsheng,Wang, Wanning,Zhang, Hao,Sun, Chitao,Gong, Xuewen,Wang, Wanning. 2017

[14]A New Method to Decline the SWC Effect on the Accuracy for Monitoring SOM with Hyperspectral Technology. Wang Chao,Feng Mei-chen,Yang Wu-de,Xiao Lu-jie,Li Guang-xin,Zhao Jia-jia,Ren Peng,Li Guang-xin. 2015

[15]A Research of Rice Water Stress Index Based on Automated Infrared Thermography Technology. Gao, Mingchao,Zhang, Wenzhong,Yao, Chen,Ding, Guohua,Zhang, Zhenyu,Han, Yadong,Wang, Yitao,Bian, Jingyang. 2013

作者其他论文 更多>>