Transcriptome analysis of adiposity in domestic ducks by transcriptomic comparison with their wild counterparts

文献类型: 外文期刊

第一作者: Chen, L.

作者: Chen, L.;Li, J. J.;Wang, D. Q.;Tian, Y.;Lu, L. Z.;Luo, J.;Li, J. X.

作者机构:

关键词: abdominal fat;Anas platyrhynchos;RNA-seq;single-nucleotide variations

期刊名称:ANIMAL GENETICS ( 影响因子:3.169; 五年影响因子:3.058 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Excessive adiposity is a major problem in the duck industry, but its molecular mechanisms remain unknown. Genetic comparisons between domestic and wild animals have contributed to the exploration of genetic mechanisms responsible for many phenotypic traits. Significant differences in body fat mass have been detected between domestic and wild ducks. In this study, we used the Peking duck and Anas platyrhynchos as the domestic breed and wild counterpart respectively and performed a transcriptomic comparison of abdominal fat between the two breeds to comprehensively analyze the transcriptome basis of adiposity in ducks. We obtained approximately 350million clean reads; assembled 61250 transcripts, including 23699 novel ones; and identified alternative 5 splice sites, alternative 3 splice sites, skipped exons and retained intron as the main alternative splicing events. A differential expression analysis between the two breeds showed that 753 genes exhibited differential expression. In Peking ducks, some lipid metabolism-related genes (IGF2, FABP5, BMP7, etc.) and oncogenes (RRM2, AURKA, CYR61, etc.) were upregulated, whereas genes related to tumor suppression and immunity (TNFRSF19, TNFAIP6, IGSF21, NCF1, etc.) were downregulated, suggesting adiposity might closely associate with tumorigenesis in ducks. Furthermore, 280576 single-nucleotide variations were found differentiated between the two breeds, including 8641 non-synonymous ones, and some of the non-synonymous ones were found enriched in genes involved in lipid-associated and immune-associated pathways, suggesting abdominal fat of the duck undertakes both a metabolic function and immune-related function. These datasets enlarge our genetic information of ducks and provide valuable resources for analyzing mechanisms underlying adiposity in ducks.

分类号: Q953

  • 相关文献

[1]Cross-species applicability of chicken microsatellite markers for investigation of genetic diversity in Indian duck (Anas platyrhynchos) populations. Mukesh,Sathyakumar, S.,Mukesh,Javed, Ruheena,Javed, Ruheena,Gaur, Uma,Han Jianlin. 2011

[2]A genome-wide scan of selective sweeps in two broiler chicken lines divergently selected for abdominal fat content. Zhang, Hui,Wang, Shou-Zhi,Wang, Zhi-Peng,Wang, Ning,Wang, Yu-Xiang,Leng, Li,Tang, Zhi-Quan,Li, Hui,Zhang, Hui,Wang, Shou-Zhi,Wang, Zhi-Peng,Wang, Ning,Wang, Yu-Xiang,Leng, Li,Tang, Zhi-Quan,Li, Hui,Da, Yang,Hu, Xiao-Xiang,Zhang, Yuan-Dan. 2012

[3]Detection of genome-wide copy number variations in two chicken lines divergently selected for abdominal fat content. Zhang, Hui,Du, Zhi-Qiang,Dong, Jia-Qiang,Wang, Hai-Xia,Shi, Hong-Yan,Wang, Ning,Wang, Shou-Zhi,Li, Hui,Zhang, Hui,Du, Zhi-Qiang,Dong, Jia-Qiang,Wang, Hai-Xia,Shi, Hong-Yan,Wang, Ning,Wang, Shou-Zhi,Li, Hui,Zhang, Hui,Du, Zhi-Qiang,Dong, Jia-Qiang,Wang, Hai-Xia,Shi, Hong-Yan,Wang, Ning,Wang, Shou-Zhi,Li, Hui. 2014

[4]Construction of multiple linear regression models using blood biomarkers for selecting against abdominal fat traits in broilers. Dong, J. Q.,Zhang, X. Y.,Wang, S. Z.,Zhang, K.,Ma, G. W.,Wu, M. Q.,Li, H.,Zhang, H.,Dong, J. Q.,Zhang, X. Y.,Wang, S. Z.,Zhang, K.,Ma, G. W.,Wu, M. Q.,Li, H.,Zhang, H.,Dong, J. Q.,Zhang, X. Y.,Wang, S. Z.,Zhang, K.,Ma, G. W.,Wu, M. Q.,Li, H.,Zhang, H.,Dong, J. Q.,Jiang, X. F.. 2018

[5]Follicle-stimulating hormone increases the intramuscular fat content and expression of lipid biosynthesis genes in chicken breast muscle. Cui, Xiao-yan,Li, Ying-ying,Liu, Ran-ran,Zhao, Gui-ping,Zheng, Mai-qing,Li, Qing-he,Wen, Jie. 2016

[6]The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. Sun, Yanfa,Zhao, Guiping,Liu, Ranran,Zheng, Maiqing,Hu, Yaodong,Wu, Dan,Zhang, Lei,Li, Peng,Wen, Jie,Zhao, Guiping,Liu, Ranran,Zheng, Maiqing,Li, Peng,Wen, Jie,Sun, Yanfa,Wen, Jie. 2013

[7]Comparison of serum biochemical parameters between two broiler chicken lines divergently selected for abdominal fat content. Dong, J. -Q.,Zhang, H.,Wang, S. -Z.,Du, Z. -Q.,Wang, Z. -P.,Leng, L.,Cao, Z. -P.,Li, Y. -M.,Luan, P.,Li, H.,Dong, J. -Q.,Zhang, H.,Wang, S. -Z.,Du, Z. -Q.,Wang, Z. -P.,Leng, L.,Cao, Z. -P.,Li, Y. -M.,Luan, P.,Li, H.,Dong, J. -Q.,Zhang, H.,Wang, S. -Z.,Du, Z. -Q.,Wang, Z. -P.,Leng, L.,Cao, Z. -P.,Li, Y. -M.,Luan, P.,Li, H.,Jiang, X. -F..

[8]Differential expression of six chicken genes associated with fatness traits in a divergently selected broiler population. Wu, Xianwen,Zhang, Qi,Xu, Songsong,Jin, Pengcheng,Luan, Peng,Li, Yumao,Cao, Zhiping,Leng, Li,Wang, Yuxiang,Wang, Shouzhi,Wu, Xianwen,Zhang, Qi,Xu, Songsong,Jin, Pengcheng,Luan, Peng,Li, Yumao,Cao, Zhiping,Leng, Li,Wang, Yuxiang,Wang, Shouzhi,Wu, Xianwen,Zhang, Qi,Xu, Songsong,Jin, Pengcheng,Luan, Peng,Li, Yumao,Cao, Zhiping,Leng, Li,Wang, Yuxiang,Wang, Shouzhi.

[9]Complementary deoxyribonucleic acid cloning of avian G0/G1 switch gene 2, and its expression and association with production traits in chicken. Pang, X.,Liu, W.,Nie, Q.,Zhang, X.,Zeng, F.,Pang, X.,Nie, Q.,Zhang, X.,Xie, L..

[10]Genome-wide characterization of differentially expressed genes provides insights into regulatory network of heat stress response in radish (Raphanus sativus L.). Wang, Ronghua,Xu, Liang,Wang, Yan,Liu, Liwang,Wang, Ronghua,Mei, Yi,Guo, Jun,Zhu, Xianwen. 2018

[11]Transcriptome Analysis of Sucrose Metabolism during Bulb Swelling and Development in Onion (Allium cepa L.). Zhang, Chunsha,Zhang, Hongwei,Liang, Yi,Zhan, Zongxiang,Liu, Bingjiang,Chen, Zhentai. 2016

[12]Expression profiles of a cytoplasmic male sterile line of Gossypium harknessii and its fertility restorer and maintainer lines revealed by RNA-Seq. Han, Zongfu,Deng, Yongsheng,Kong, Fanjin,Wang, Zongwen,Shen, Guifang,Wang, Jinghui,Duan, Bing,Li, Ruzhong,Qin, Yuxiang. 2017

[13]Transcriptome and Differential Expression Profiling Analysis of the Mechanism of Ca2+ Regulation in Peanut (Arachis hypogaea) Pod Development. Yang, Sha,Zhang, Jialei,Geng, Yun,Guo, Feng,Meng, Jingjing,Li, Xinguo,Li, Lin,Wang, Jianguo,Sui, Na,Wan, Shubo. 2017

[14]Genome-wide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton. Jianyong Wu,Wu, Jianyong,Xing, Chaozhu,Meng Zhang,Bingbing Zhang,Xuexian Zhang,Liping Guo,Tingxiang Qi,Hailin Wang,Jinfa Zhang,Chaozhu Xing. 2017

[15]Early Transcriptomic Adaptation to Na2CO3 Stress Altered the Expression of a Quarter of the Total Genes in the Maize Genome and Exhibited Shared and Distinctive Profiles with NaCl and High pH Stresses. Zhang, Li-Min,Liu, Xiang-Guo,Han, Si-Ping,Hao, Dong-Yun,Zhang, Li-Min,Qu, Xin-Ning,Yu, Ying,Dou, Yao,Xu, Yao-Yao,Hao, Dong-Yun,Zhang, Li-Min,Jing, Hai-Chun. 2013

[16]Uncovering Male Fertility Transition Responsive miRNA in a Wheat Photo-Thermosensitive Genic Male Sterile Line by Deep Sequencing and Degradome Analysis. Bai, Jian-Fang,Wang, Yu-Kun,Wang, Peng,Duan, Wen-Jing,Yuan, Shao-Hua,Sun, Hui,Yuan, Guo-Liang,Ma, Jing-Xiu,Wang, Na,Zhang, Feng-Ting,Zhang, Li-Ping,Zhao, Chang-Ping,Bai, Jian-Fang,Wang, Yu-Kun,Wang, Peng,Duan, Wen-Jing,Yuan, Shao-Hua,Sun, Hui,Yuan, Guo-Liang,Ma, Jing-Xiu,Wang, Na,Zhang, Feng-Ting,Zhang, Li-Ping,Zhao, Chang-Ping,Wang, Peng,Duan, Wen-Jing. 2017

[17]De novo assembly of pen shell (Atrina pectinata) transcriptome and screening of its genic microsatellites. Sun, Xiujun,Li, Dongming,Liu, Zhihong,Zhou, Liqing,Wu, Biao,Yang, Aiguo,Sun, Xiujun,Li, Dongming,Liu, Zhihong,Zhou, Liqing,Wu, Biao,Yang, Aiguo. 2017

[18]A Novel AP2/ERF Transcription Factor CR1 Regulates the Accumulation of Vindoline and Serpentine in Catharanthus roseus. Gao, Fangyuan,Ren, Juansheng,Lu, Xianjun,Ren, Guangjun,Wang, Rui. 2017

[19]RNA-Seq Analyses for Two Silkworm Strains Reveals Insight into Their Susceptibility and Resistance to Beauveria bassiana Infection. Xing, Dongxu,Jiang, Liang,Xia, Qingyou,Xing, Dongxu,Yang, Qiong,Li, Qingrong,Xiao, Yang,Ye, Mingqiang. 2017

[20]RNA-seq analysis of unintended effects in transgenic wheat overexpressing the transcription factor GmDREB1. Jiang, Qiyan,Niu, Fengjuan,Sun, Xianjun,Hu, Zheng,Li, Xinhai,Ma, Youzhi,Zhang, Hui. 2017

作者其他论文 更多>>