An aquaporin gene from halophyte Sesuvium portulacastrum, SpAQP1, increases salt tolerance in transgenic tobacco

文献类型: 外文期刊

第一作者: Chang, Wenjun

作者: Chang, Wenjun;Liu, Xiwen;Zhu, Jiahong;Fan, Wei;Chang, Wenjun;Liu, Xiwen;Zhu, Jiahong;Fan, Wei;Zhang, Zhili

作者机构:

关键词: Sesuvium portulacastrum;Aquaporin;Salt;Seed germination;Root growth;Antioxidative enzyme

期刊名称:PLANT CELL REPORTS ( 影响因子:4.57; 五年影响因子:4.463 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Aquaporin (AQP) plays crucial roles in the responses of plant to abiotic stresses such as drought, salt and cold. Compared to glycophytes, halophytes often have excellent salt and drought tolerances. To uncover the molecular mechanism of halophyte Sesuvium portulacastrum tolerance to salt, in this study, an AQP gene, SpAQP1, from S. portulacastrum was isolated and characterized. The amino acid sequence of SpAQP1 shared high homology with that of plant plasma membrane intrinsic proteins (PIPs) and contained the distinct molecular features of PIPs. In the phylogenic tree, SpAQP1 was evidently classified as the PIP2 subfamily. SpAQP1 is expressed in roots, stems and leaves, and was significantly induced by NaCl treatment and inhibited by abscisic acid (ABA) treatment. When heterologously expressed in yeast and tobacco, SpAQP1 enhanced the salt tolerance of yeast strains and tobacco plants and promoted seed germination and root growth under salt stress in transgenic plants. The activity of antioxidative enzymes including superoxide dismutase, peroxidase and catalase was increased in transgenic plants overexpressing SpAQP1. Taken together, our studies suggested that SpAQP1 functioned in the responses of S. portulacastrum to salt stress and could increase salt tolerance by enhancing the antioxidative activity of plants.

分类号: Q942

  • 相关文献

[1]Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. Fan, Wei,Zhang, Zhili,Zhang, Yanlin,Fan, Wei,Zhang, Yanlin,Zhang, Zhili. 2009

[2]Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance. Yi, Xiaoping,Sun, Yong,Yang, Qian,Guo, Anping,Chang, Lili,Wang, Dan,Tong, Zheng,Jin, Xiang,Wang, Limin,Wang, Xuchu,Yi, Xiaoping,Guo, Anping,Chang, Lili,Wang, Xuchu,Yu, Jianlan,Jin, Wenhai.

[3]Identification of up-regulated genes provides integrated insight into salt-induced tolerance mechanisms in Sesuvium portulacastrum roots. Fan, Wei,Fan, Wei,Chang, Wenjun,Liu, Xiwen,Zhang, Zhili,Zhang, Zhili,Xiao, Chuan,Yang, Jianli.

[4]SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis. Yang, Chenglong,Zhou, Yang,Fan, Jie,Shen, Longbin,Yao, Yuan,Li, Ruimei,Fu, Shaoping,Duan, Ruijun,Guo, Jianchun,Yang, Chenglong,Zhou, Yang,Fan, Jie,Shen, Longbin,Yao, Yuan,Li, Ruimei,Fu, Shaoping,Duan, Ruijun,Guo, Jianchun,Yang, Chenglong,Fu, Yuhua,Zhou, Yang,Fan, Jie,Hu, Xinwen.

[5]Cloning of Salt Tolerance-Related cDNAs from the Mangrove Plant Sesuvium portulacastrum L.. Zeng, Hui-Cai,Deng, Liu-Hong,Zhang, Chun-Fa.

[6]Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum. Wang, Dongyang,Wang, Haiyan,Han, Bing,Wang, Bin,Guo, Anping,Liu, Chongjing,Chang, Lili,Peng, Ming,Wang, Xuchu,Wang, Dongyang,Wang, Haiyan,Han, Bing,Wang, Bin,Liu, Chongjing,Wang, Xuchu,Zheng, Dong.

[7]Comparison of jasmine antioxidant system responses to different degrees and durations of shade. Deng, Yanming,Jia, Xinping,Sun, Xiaobo,Liang, Lijian,Su, Jiale. 2018

[8]Effect of polychlorinated biphenyls on oxidation stress in the liver of juvenile GIFT, Oreochromis niloticus. Zheng, Y.,Qiu, L. P.,Meng, S. L.,Fan, L. M.,Song, C.,Li, D. D.,Zhang, C.,Chen, J. Z.,Zheng, Y.,Chen, J. Z.. 2016

[9]EFFECT OF DROUGHT STRESS ON ANTIOXIDANT MECHANISMS OF WEEDY RICE. Ding, Guohua,Yang, Guang,Zhang, Fengming,Bai, Liangming,Sun, Shichen,Jiang, Shukun,Wang, Tongtong,Xia, Tianshu,Ma, Dianrong,Chen, Wenfu,Ding, Guohua,Zhang, Fengming,Bai, Liangming,Sun, Shichen,Jiang, Shukun,Wang, Tongtong,Xia, Tianshu,Yang, Guang. 2016

[10]Defense against Pieris rapae in cabbage plants induced by Bemisia tabaci biotype B. Huang, Hong,Shan, Hong-Wei,Liu, Tong-Xian,Zhang, Shi-Ze,Huang, Hong,Shan, Hong-Wei,Liu, Tong-Xian,Zhang, Fan,Wan, Fang-Hao. 2013

[11]Zinc improves salt tolerance by increasing reactive oxygen species scavenging and reducing Na+ accumulation in wheat seedlings. Xu, L. H.,Wang, W. Y.,Xu, J.,Xu, L. H.,Guo, J. J.,Shi, D. Q.,Xu, J.,Qin, J.,Shi, D. Q.,Li, Y. L..

[12]Physiological and molecular responses to drought stress in rubber tree (Hevea brasiliensis Muell. Arg.). Wang, Li-feng.

[13]Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. Zeng Liu,Li Jing-jing,Lu Guang-yuan,Fu Gui-ping,Zhang Xue-kun,Zou Xi-ling,Cheng Yong,Cai Jun-song,Li Jing-jing,Li Chun-sheng,Ma Hai-qing,Liu Qing-yun. 2018

[14]AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Xu, Jing,Tian, Yong-Sheng,Peng, Ri-He,Xiong, Ai-Sheng,Zhu, Bo,Jin, Xiao-Fen,Gao, Feng,Fu, Xiao-Yan,Yao, Quan-Hong,Xu, Jing,Hou, Xi-Lin. 2010

[15]Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses. Yu, Y.,Cui, Y. C.,Ren, C.,Rocha, P. S. C. F.,Wang, M. L.,Xia, X. J.,Yu, Y.,Ren, C.,Peng, M.,Xu, G. Y.. 2016

[16]iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress. Jiang, Qiyan,Niu, Fengjuan,Sun, Xianjun,Hu, Zheng,Zhang, Hui,Li, Xiaojuan.

[17]Cloning and expression analysis of a vacuolar Na+/H+ antiporter gene from Alfalfa. Yang, QC,Wu, MS,Wang, PQ,Kang, JM,Zhou, XL.

[18]SlHDA5, a Tomato Histone Deacetylase Gene, Is Involved in Responding to Salt, Drought, and ABA. Yu, Xiaohui,Gao, Qiong,Chen, Guoping,Guo, Jun-E,Guo, Xuhu,Tang, Boyan,Hu, Zongli,Gao, Qiong. 2018

[19]Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana. Jin, Xiaofeng,Xue, Yong,Xu, RanRan,Bian, Lin,Zhu, Bo,Han, Hongjuan,Peng, Rihe,Yao, Quanhong,Wang, Ren.

[20]Expression of a calcineurin gene improves salt stress tolerance in transgenic rice. Ma, XJ,Qian, Q,Zhu, DH.

作者其他论文 更多>>