Label free electrochemical aptasensor for ultrasensitive detection of ractopamine

文献类型: 外文期刊

第一作者: Wang, Peilong

作者: Wang, Peilong;Wang, Ruiguo;Su, Xiaoou;Yang, Fei;Shi, Lei;Zhou, Ying;He, Yujian;Yao, Dongsheng

作者机构:

关键词: Ractopamine;Aptamer;Graphene;Gold nanoparticles;Cyclic voltammetry;Differential pulse voltammetry

期刊名称:BIOSENSORS & BIOELECTRONICS ( 影响因子:10.618; 五年影响因子:9.323 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A label free electrochemical (EC) aptasensor for ultrasensitive detection of ractopamine (RAC) was developed. A special immobilization media consisting of gold nanoparticles/poly dimethyl diallyl ammonium chloride-graphene composite (AuNPs/PDDA-GN) was utilized to improve conductivity and performance of the biosensor. The RAC aptamer was attached on AuNPs of the composite membrane via AuS bond. The fabrication process of the EC aptasensor was characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The peak currents obtained by differential pulse voltammetry decreased linearly with the increasing of RAC concentrations and the sensor responds approximately logarithmically over a wide dynamic range of RAC concentration from 1.0 x 10(-12) mol/L to 1.0 x 10(-8) mol/L. The linear correlation coefficient of the developed aptasensor was 0.998, the limit of detection was 5.0 x 10(-13) mol/L. The proposed EC aptasensor displayed good stability, reproducibility and robust operation in animal urine. Particularly, the generality of the fabrication approach of electrochemical aptasensor is highlighted with a further example for illegal drugs detection via the aptamer identification. (C) 2015 Elsevier B.V. All rights reserved.

分类号: Q

  • 相关文献

[1]Sensitive immunoassay for the beta-agonist ractopamine based on glassy carbon electrode modified with gold nanoparticles and multi-walled carbon nanotubes in a film of poly-arginine. Wang, Peilong,Su, Xiaoou,Zhou, Ying,Zhao, Hong,He, Yujian,He, Yujian. 2014

[2]An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Liu, Na,Tan, Yanglan,Wang, Hui,Wu, Aibo,Nie, Dongxia,Zhao, Zhiyong,Liao, Yucai,Sun, Changpo.

[3]Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe. Wang, Peilong,Su, Xiaoou,Zhou, Ying,Zhao, Hong,He, Yujian,He, Yujian.

[4]Aptamer based ultrasensitive determination of the beta-adrenergic agonist ractopamine using PicoGreen as a fluorescent DNA probe. Zhu, Chao,Zhang, Guilan,Huang, Yafei,Yan, Jiao,Chen, Ailiang,Zhu, Chao,Zhang, Guilan,Huang, Yafei,Yan, Jiao,Chen, Ailiang,Huang, Yafei,Yan, Jiao.

[5]Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles. Luan, Yunxia,Chen, Jiayi,Li, Cheng,Fu, Hailong,Ma, Zhihong,Lu, Anxiang,Luan, Yunxia,Chen, Jiayi,Li, Cheng,Fu, Hailong,Ma, Zhihong,Lu, Anxiang,Xie, Gang. 2015

[6]Visual and microplate detection of aflatoxin B2 based on NaCl-induced aggregation of aptamer-modified gold nanoparticles. Luan, Yunxia,Chen, Jiayi,Li, Cheng,Ping, Hua,Ma, Zhihong,Lu, Anxiang,Xie, Gang.

[7]High sensitive rapid visual detection of sulfadimethoxine by label-free aptasensor. Chen, Ailiang,Jiang, Xiaoling,Zhang, Weiwei,Chen, Gang,Zhao, Yan,Tunio, Tarique Muhammad,Liu, Jinchuan,Lv, Zhenzhen,Yang, Shuming,Chen, Ailiang,Jiang, Xiaoling,Zhang, Weiwei,Chen, Gang,Zhao, Yan,Tunio, Tarique Muhammad,Liu, Jinchuan,Yang, Shuming,Lv, Zhenzhen,Li, Cheng.

[8]Gold Nanoparticle-Aptamer Based Colorimetric Biosensing Assays. Liu Jin-chuan,Lu Zhen-zhen,Chen Ai-liang. 2014

[9]Rapid Visual Detection of Aflatoxin B1 by Label-Free Aptasensor Using Unmodified Gold Nanoparticles. Luan, Yunxia,Chen, Jiayi,Lu, Anxiang,Li, Cheng,Fu, Hailong,Ma, Zhihong,Wang, Jihua,Chen, Zhengbo,Xie, Gang.

[10]An aptamer-based signal-on bio-assay for sensitive and selective detection of Kanamycin A by using gold nanoparticles. Chen, Jing,Li, Zhaohui,Ge, Jia,Yang, Ran,Zhang, Lin,Qu, Ling-bo,Qu, Ling-bo,Wang, Hong-qi,Zhang, Ling.

[11]Enhancement of surface plasmon resonance signals using a MIP/GNPs/rGO nano-hybrid film for the rapid detection of ractopamine. Yao, Ting,Gu, Xu,Li, Junguo,Li, Jun,Zhao, Zhen,Yao, Ting,Li, Tengfei,Wang, Jing,She, Yongxin,Yao, Ting,Qin, Yuchang.

[12]Determination of ractopamine in animal hair: Application to residue depletion in sheep and residue monitoring. Suo Decheng,Zhao Genlong,Wang Ruiguo,Su Xiaoou.

[13]Synthesis of ractopamine molecularly imprinted membrane and its application in the rapid determination of three beta-agonists in porcine urine samples. Wang, Peilong,Zhang, Wei,Ye, Zhihua,Su, Xiaoou,Zhu, Hongxia,Zhu, Ruohua,Wang, Peilong,Zhang, Wei,Ye, Zhihua,Su, Xiaoou. 2013

[14]Mesopores Cellular Foam-Based Electrochemical Sensor for Sensitive Determination of Ractopamine. Ya, Yu,Wei, Liang. 2017

[15]Detection of ractopamine residues in pork by surface plasmon resonance-based biosensor inhibition immunoassay. Zheng, Hong,Yang, Guo-Sheng,Lu, Xiao,Li, Xiu-Qing,Yuan, Xue-Xia,Deng, Li-Gang,Zhang, Hong,Wang, Wen-Zheng,Lu, Xiao,Li, Xiu-Qing,Yuan, Xue-Xia,Deng, Li-Gang,Zhang, Hong,Wang, Wen-Zheng,Yang, Guo-Sheng,Li, Hui,Meng, Meng,Xi, Ri-Mo,Aboul-Enein, Hassan Y..

[16]Development of indirect competitive immunoassay for highly sensitive determination of ractopamine in pork liver samples based on surface plasmon resonance sensor. Liu, Ming,Ning, Baoan,Peng, Yuan,Gao, Zhixian,Qu, Lijie,Dong, Jianwei,Gao, Na,Gao, Zhixian,Liu, Lei.

[17]An electrochemiluminescence aptasensor switch for aldicarb recognition via ruthenium complex-modified dendrimers on multiwalled carbon nanotubes. Li, Shuhuai,Liu, Chunhua,Han, Bingjun,Luo, Jinhui,Yin, Guihao,Li, Shuhuai,Liu, Chunhua,Han, Bingjun,Luo, Jinhui,Yin, Guihao. 2017

[18]Effects of the Fe-II/Cu-II Interaction on Copper Aging Enhancement and Pentachlorophenol Reductive Transformation in Paddy Soil. Wang, Yong-kui,Tao, Liang,Chen, Man-jia,Li, Fang-bai,Wang, Yong-kui,Chen, Man-jia,Wang, Yong-kui,Chen, Man-jia. 2012

[19]Reductive transformation of 2-nitrophenol by Fe(II) species in gamma-aluminum oxide suspension. Tao, Liang,Li, Fangbai,Sun, Kewen,Tao, Liang,Sun, Kewen,Feng, Chunhua,Tao, Liang,Sun, Kewen. 2009

[20]Electrochemical evidence of Fe(II)/Cu(II) interaction on titanium oxide for 2-nitrophenol reductive transformation. Tao, Liang,Li, Fangbai. 2012

作者其他论文 更多>>