Rice GDP-mannose pyrophosphorylase OsVTC1-1 and OsVTC1-3 play different roles in ascorbic acid synthesis
文献类型: 外文期刊
第一作者: Qin, Hua
作者: Qin, Hua;Deng, Zaian;Zhang, Chuanyu;Wang, Yayun;Wang, Juan;Huang, Rongfeng;Zhang, Zhijin;Qin, Hua;Wang, Yayun;Wang, Juan;Huang, Rongfeng;Zhang, Zhijin;Deng, Zaian;Zhang, Chuanyu;Zhang, Zhili;Liu, Hai
作者机构:
关键词: Rice;Ascorbic acid;GDP-D-mannose pyrophosphorylase;L-galactose pathway
期刊名称:PLANT MOLECULAR BIOLOGY ( 影响因子:4.076; 五年影响因子:4.89 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: GDP-d-mannose pyrophosphorylase (GMPase) catalyzes the synthesis of GDP-d-mannose, which is a precursor for ascorbic acid (AsA) synthesis in plants. The rice genome encodes three GMPase homologs OsVTC1-1, OsVTC1-3 and OsVTC1-8, but their roles in AsA synthesis are unclear. The overexpression of OsVTC1-1 or OsVTC1-3 restored the AsA synthesis of vtc1-1 in Arabidopsis, while that of OsVTC1-8 did not, indicating that only OsVTC1-1 and OsVTC1-3 are involved in AsA synthesis in rice. Similar to Arabidopsis VTC1, the expression of OsVTC1-1 was high in leaves, induced by light, and inhibited by dark. Unlike OsVTC1-1, the expression level of OsVTC1-3 was high in roots and quickly induced by the dark, while the transcription level of OsVTC1-8 did not show obvious changes under constant light or dark treatments. In OsVTC1-1 RNAi plants, the AsA content of rice leaves decreased, and the AsA production induced by light was limited. In contrast, OsVTC1-3 RNAi lines altered AsA synthesis levels in rice roots, but not in the leaves or under the light/dark treatment. The enzyme activity showed that OsVTC1-1 and OsVTC1-3 had higher GMPase activities than OsVTC1-8 in vitro. Our data showed that, unlike in Arabidopsis, the rice GPMase homologous proteins illustrated a new model in AsA synthesis: OsVTC1-1 may be involved in the AsA synthesis, which takes place in leaves, while OsVTC1-3 may be responsible for AsA synthesis in roots. The different roles of rice GMPase homologous proteins in AsA synthesis may be due to their differences in transcript levels and enzyme activities.
分类号: Q946
- 相关文献
作者其他论文 更多>>
-
Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato (Solanum lycopersicum)
作者:Hu, Jiahui;Yu, Qinghui;Hu, Jiahui;Wang, Juan;Muhammad, Tayeb;Yang, Tao;Li, Ning;Yang, Haitao;Yu, Qinghui;Wang, Baike
关键词:tomato; fruit ripening; metabolome; transcriptome; carotenoids; lycopene; ethenyl
-
Comprehensive genomic characterization and expression analysis of calreticulin gene family in tomato
作者:Muhammad, Tayeb;Yang, Tao;Wang, Baike;Yang, Haitao;Wang, Juan;Yu, Qinghui;Tuerdiyusufu, Diliaremu
关键词:tomato; CRT gene family; endoplasmic reticulum; bioinformatics; abiotic stress; gene expression
-
Long-term Application of Agricultural Amendments Regulate Hydroxyl Radicals Production during Oxygenation of Paddy Soils
作者:Chen, Ning;Huang, Danyu;Liu, Xiantang;Zhou, Dongmei;Chen, Ning;Zeng, Yu;Wu, Tongliang;Fang, Guodong;Wang, Yujun;Wang, Juan;Liu, Guangxia;Gao, Yan
关键词:agricultural amendment; hydroxyl radicals; soil aggregate fractionation, paddy soil; organic contaminantattenuation
-
Stomach as the target organ of Rickettsia heilongjiangensis infection in C57BL/6 mice identified by click chemistry
作者:Wang, Juan;Wang, Juan;Wei, Wei;Chen, Zi-Yun;Xiong, Tao;Xia, Luo-Yuan;Jiang, Jia-Fu;Zhu, Dai-Yun;Jia, Na;Cao, Wu-Chun;Du, Li-Feng;Zhang, Ming-Zhu;Xia, Luo-Yuan;Chen, Zi-Yun;Zhang, Xu;Li, Wen-Jun;Wang, Zhen-Fei
关键词:
-
Ethylene Modulates Rice Root Plasticity under Abiotic Stresses
作者:Qin, Hua;Li, Yuxiang;Huang, Rongfeng;Qin, Hua;Huang, Rongfeng;Xiao, Minggang
关键词:root development; ethylene; abiotic stress; rice
-
Research on the influence factors of sustainable development of plateau characteristic agriculture based on DEMATEL and AISM combined model
作者:Wang, Wei;Liu, Hai;Zhao, Pengfei;Han, Mo
关键词:
-
Detection of clinical Serratia marcescens isolates carrying bla KPC-2 in a hospital in China
作者:Tang, Biao;Yue, Min;Tang, Biao;Zhao, Haoyu;Huang, Yuting;Tang, Biao;Zhao, Haoyu;Huang, Yuting;Zhao, Haoyu;Wang, Juan;Li, Jie;Liu, Na;Yue, Min
关键词:Serratia marcescens; Antimicrobial resistance; Genome sequences; Human