Estimating leaf SPAD values of freeze-damaged winter wheat using continuous wavelet analysis

文献类型: 外文期刊

第一作者: Wang, Hui-fang

作者: Wang, Hui-fang;Huo, Zhi-guo;Zhou, Guang-sheng;Wu, Li;Wang, Hui-fang;Liao, Qin-hong;Feng, Hai-kuan;Liao, Qin-hong

作者机构:

关键词: Wheat;Freeze injury;Hyperspectral data analysis;Continuous wavelet analysis

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Freeze injury, one of the most destructive agricultural disasters caused by climate, has a significant impact on the growth and production of winter wheat. Chlorophyll content is an important indicator of a plant's growth status. In this study, we analyzed the hyperspectral reflectance of normal and freeze stressed leaves of winter wheat using a spectro-radiometer in a laboratory. The response of the chlorophyll spectra of plants under freeze stress was analyzed to predict the severity of freeze injury. A continuous wavelet transform (CWT) was conducted in conjunction with a correlation analysis, which generated a correlation scalogram that summarized the correlation between the chlorophyll content (SPAD value) and wavelet power at different wavelengths and decomposition scales. A linear regression model was established to relate the SPAD values and wavelet power coefficients. The results indicated that the most sensitive wavelet feature (region E: 553 nm, scale 5, R-2 = 0.8332) was located near the strong pigment absorption bands, and the model based on this feature could estimate the SPAD value with a high coefficient of determination (R-2 = 0.7444, RMSE = 7.359). The data revealed that the chlorophyll content of leaves under different low temperatures treatments could be accurately estimated using CWT. Also, this emerging spectral analytical approach can be applied to other complex datasets, including a broad range of species, and may be adapted to estimate basic leaf biochemical elements, such as nitrogen, cellulose, and lignin. (C) 2015 Elsevier Masson SAS. All rights reserved.

分类号: Q945`Q946

  • 相关文献

[1]Hyperspectral characteristics of winter wheat under freezing injury stress and LWC inversion model. Wang, Huifang,Wang, Jihua,Wang, Qian,Miao, Naizhe,Huang, Wenjiang,Feng, Haikuang,Dong, Yingying,Wang, Huifang,Wang, Jihua. 2012

[2]MONITORING WINTER WHEAT FREEZE INJURY BASED ON MULTI-TEMPORAL DATA. Wang, Huifang,Gu, Xiaohe,Wang, Jihua,Dong, Yingying,Wang, Huifang,Wang, Jihua,Dong, Yingying. 2012

[3]Spectroscopic Leaf Level Detection of Powdery Mildew for Winter Wheat Using Continuous Wavelet Analysis. Zhang Jing-cheng,Yuan Lin,Wang Ji-hua,Huang Wen-jiang,Chen Li-ping,Zhang Dong-yan,Zhang Jing-cheng,Yuan Lin,Wang Ji-hua,Zhang Dong-yan,Huang Wen-jiang. 2012

[4]CONTINUOUS WAVELET ANALYSIS BASED SPECTRAL FEATURE SELECTION FOR WINTER WHEAT YELLOW RUST DETECTION. Zhang Jingcheng,Wang Jihua,Zhang Jingcheng,Luo Juhua,Huang Wenjiang,Wang Jihua,Luo Juhua. 2011

[5]Evaluation of spectral indices and continuous wavelet analysis to quantify aphid infestation in wheat. Luo, Juhua,Huang, Wenjiang,Yuan, Lin,Zhao, Chunjiang,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou.

[6]Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat. Wang, Xiao,Xin, Caiyun,Cai, Jian,Zhou, Qin,Dai, Tingbo,Cao, Weixing,Jiang, Dong,Xin, Caiyun. 2016

[7]Distribution Characteristics of Soil Cadmium in Different Textured Paddy Soil Profiles and Its Relevance with Cadmium Uptake by Crops. Wang Zheng-yin,Qin Yu-sheng,Zhan Shao-jun,Yu Hua,Tu Shi-hua. 2013

[8]Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L.. Zhao, C. Z.,Li, Y. H.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Wang, X. J.. 2016

[9]Wheat Optimized Fertilization of High Yield Field with Returning Whole Stalks into the Soil in Huang-huai-hai Plain. Sui, Xue-Yan,Wang, Meng,Wang, Yong,Guo, Hong-Hai,Li, Zhan,Zhang, Xiao-Dong. 2016

[10]Effects of Cadmium Stress on Alternative Oxidase and Photosystem II in Three Wheat Cultivars. Xu, Fei,Zhang, Zhong-Wei,Chen, Yang-Er,Wang, Xiao,Shang, Jing,Lin, Hong-Hui,Duan, Yong-Ping,Tu, Shi-Hua,Feng, Wen-Qiang. 2010

[11]Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat. Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi. 2016

[12]Assessment of Land Suitability Potentials for Selecting Winter Wheat Cultivation Areas in Beijing, China, Using RS and GIS. Wang Da-cheng,Wang Ji-hua,Wang Da-cheng,Li Cun-jun,Song Xiao-yu,Wang Ji-hua,Yang Xiao-dong,Huang Wen-jiang,Wang Jun-ying,Zhou Ji-hong. 2011

[13]Dissipation and Residues of Dichlorprop-P and Bentazone in Wheat-Field Ecosystem. Feng, Xiaoxiao,Pan, Lixiang,Zhang, Hongyan,Yu, Jianlei,Song, Guochun. 2016

[14]Competitive interaction in a jujube tree/wheat agroforestry system in northwest China's Xinjiang Province. Zhang, W.,Wang, B. J.,Gan, Y. W.,Duan, Z. P.,Hao, X. D.,Lv, X.,Li, L. H.,Xu, W. L.. 2017

[15]Cuticular Wax Accumulation Is Associated with Drought Tolerance in Wheat Near-Isogenic Lines. Guo, Jun,Yu, Xiaocong,Li, Haosheng,Cheng, Dungong,Liu, Aifeng,Liu, Jianjun,Liu, Cheng,Song, Jianmin,Guo, Jun,Yu, Xiaocong,Li, Haosheng,Cheng, Dungong,Liu, Aifeng,Liu, Jianjun,Liu, Cheng,Song, Jianmin,Xu, Wen,Shen, Hao,Zhao, Shijie. 2016

[16]Preliminary Study on the Physiological Characteristics of Transgenic Wheat with Maize C-4-pepc Gene in Field Conditions. Han, L. L.,Han, L. L.,Xu, W. G.,Hu, L.,Li, Y.,Qi, X. L.,Zhang, J. H.,Zhang, H. F.,Wang, Y. X.. 2014

[17]Effect of Biochars from Rice Husk, Bran, and Straw on Heavy Metal Uptake by Pot-Grown Wheat Seedling in a Historically Contaminated Soil. Zheng, Ruilun,Xiao, Bo,Chen, Zheng,Wang, Xiaohui,Huang, Yizong,Sun, Guoxin,Cai, Chao. 2013

[18]Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Shen, X,Zhou, M,Lu, W,Ohm, H. 2003

[19]NOVEL FLUORESCENT SEQUENCE-RELATED AMPLIFIED POLYMORPHISM (FSRAP) MARKERS FOR THE CONSTRUCTION OF A GENETIC LINKAGE MAP OF WHEAT (Triticum aestivum L.). Zhang, Li,Yu, Yan,Wei, Shuhong,Yang, Jun,Yang, Zaijun,Qu, Jipeng,Peng, Zhengsong,Lu, Lu,Yang, Wuyun. 2017

[20]Different Tolerance in Bread Wheat, Durum Wheat and Barley to Fusarium Crown Rot Disease Caused by Fusarium pseudograminearum. Liu, Yaxi,Wei, Yuming,Zheng, Youliang,Liu, Yaxi,Ma, Jun,Yan, Wei,Liu, Chunji,Ma, Jun,Yan, Guijun,Yan, Wei,Zhou, Meixue,Zhou, Meixue. 2012

作者其他论文 更多>>